Referencias bibliográficas

  1. A.J.L. Cooper, J.T. Pinto, P.S. Callery, Reversible and irreversible protein glutathionylation: biological and clinical aspects, Expet Opin. Drug Metabol. Toxicol. 7 (7) (2011) 891e910.
  2. L.D. DeLeve, N. Kaplowitz, Glutathione metabolism and its role in hepatotoxicity, Pharmacol. Therapeut. 52 (3) (1991) 287e305.
  3. Gamma-glutamyl transpeptidase in glutathione biosynthesis. Zhang H, Forman HJ, Choi J. Methods Enzymol. 2005;401:468–483. doi: 10.1016/S0076-6879(05)01028-1.
  4. G.M. Enns, T. Moore, A. Le, K. Atkuri, M.K. Shah, K. Cusmano-Ozog, A.K. Niemi, T.M. Cowan, Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status, PLoS One 9 (2014)
  5. C. Signorini, S. Leoncini, C. De Felice, A. Pecorelli, I. Meloni, F. Ariani, F. Mari, S. Amabile, E. Paccagnini, M. Gentile, et al., Redox imbalance and morphological changes in skin fibroblasts in typical Rett syndrome, Oxid. Med. Cell Longev. 2014 (2014) 195935.
  6. Role of glutathione in cancer: from mechanisms to therapies. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Biomolecules. 2020;10:1429
  7. Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA. Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1967-72.
  8. Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel). 2021 Feb 28;10(3):364
  9. M.S.S. Alhamdani, Impairment of glutathione biosynthetic pathway in uremia and dialysis, Nephrol. Dial. Transplant. 20 (2005) 124e128.
  10. D.M. Walters, H.Y. Cho, S.R. Kleeberger, Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf 2, Antioxid. Redox Signal. 10 (2008) 321e332.
  11. F. Piemonte, A. Pastore, G. Tozzi, D. Tagliacozzi, F.M. Santorelli, R. Carrozzo, C. Casali, M. Damiano, G. Federici, E. Bertini, Glutathione in blood of patients with Friedreich’s ataxia, Eur. J. Clin. Investig. 31 (2001) 1007e1011.
  12. H. Liu, H. Wang, S. Shenvi, T.M. Hagen, R.M. Liu, Glutathione metabolism during aging and in Alzheimer disease, Ann. N. Y. Acad. Sci. 1019 (2004) 346e349.
  13. M. Merad-Boudia, A. Nicole, D. Santiard-Baron, C. Saille, I. Ceballos-Picot, Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease, Biochem. Pharmacol. 5 6 (1998) 645e655.
  14. Kim K. Glutathione in the Nervous System as a Potential Therapeutic Target to Control the  development and Progression of Amyotrophic Lateral Sclerosis. Antioxidants (Basel). 2021 Jun 23;10(7):1011.
  15. C. Signorini, S. Leoncini, C. De Felice, A. Pecorelli, I. Meloni, F. Ariani, F. Mari, S. Amabile, E. Paccagnini, M. Gentile, et al., Redox imbalance and morphological changes in skin fibroblasts in typical Rett syndrome, Oxid. Med. Cell Longev. 2014 (2014) 195935.
  16. Dickinson D.A., Forman H.J. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002;64:1019–1026.
  17. Lu S.C. Regulation of hepatic glutathione synthesis: Current concepts and controversies. FASEB J. 1999;13:1169–1183.
  18. Dickinson D.A., Forman H.J. Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 2002;64:1019–1026.
  19. Tuell D, Ford G, Los E, Stone W. The Role of Glutathione and Its Precursors in Type 2 Diabetes. Antioxidants (Basel). 2024 Feb 1;13(2):184. doi: 10.3390/antiox13020184. PMID: 38397782; PMCID: PMC10885928.
  20. Anderson, E.J.; Lustig, M.E.; Boyle, K.E.; Woodlief, T.L.; Kane, D.A.; Lin, C.T.; Price, J.W.; Kang, L.; Rabinovitch, P.S.; Szeto, H.H.; et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Investig. 2009, 119, 573–581.
  21. Choromańska B, Myśliwiec P, Łuba M, Wojskowicz P, Myśliwiec H, Choromańska K, Dadan J, Zalewska A, Maciejczyk M. The Impact of Hypertension and Metabolic Syndrome on Nitrosative Stress and Glutathione Metabolism in Patients with Morbid Obesity. Oxid Med Cell Longev. 2020 Sep 9;2020:1057570. doi: 10.1155/2020/1057570. PMID: 32963689; PMCID: PMC7501544.
  22. Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants (Basel). 2021 Jul 29;10(8):1220.
  23. Rybka J., Kupczyk D., Kedziora-Kornatowska K., Motyl J., Czuczejko J., Szewczyk-Golec K., Kozakiewicz M., Pawluk H., Carvalho L.A., Kedziora J. Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc. Toxicol. 2011;11:1–9.
  24. Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438.
  25. Banik, S.; Ghosh, A. The association of oxidative stress biomarkers with type 2 diabetes mellitus: A systematic review and meta-analysis. Health Sci. Rep. 2021, 4, e389.
  26. Dham, D.; Roy, B.; Gowda, A.; Pan, G.; Sridhar, A.; Zeng, X.; Thandavarayan, R.A.; Palaniyandi, S.S. 4-Hydroxy-2-nonenal, a lipid peroxidation product, as a biomarker in diabetes and its complications: Challenges and opportunities. Free Radic. Res. 2021, 55, 547–561
  27. Shabalala, S.C.; Johnson, R.; Basson, A.K.; Ziqubu, K.; Hlengwa, N.; Mthembu, S.X.H.; Mabhida, S.E.; Mazibuko-Mbeje, S.E.; Hanser, S.; Cirilli, I.; et al. Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants 2022, 11, 2071.
  28. Sun, L.; Wu, Q.; Mao, X. Effects of Oxidation Modification by Malondialdehyde on the Structure and Functional Properties of Walnut Protein. Foods 2022, 11, 2432.
  29. Frohnert, B.I.; Sinaiko, A.R.; Serrot, F.J.; Foncea, R.E.; Moran, A.; Ikramuddin, S.; Choudry, U.; Bernlohr, D.A. Increased adipose protein carbonylation in human obesity. Obesity 2011, 19, 1735–1741.
  30. Grimsrud, P.A.; Picklo, M.J.; Griffin, T.J.; Bernlohr, D.A. Carbonylation of adipose proteins in obesity and insulin resistance: Identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol. Cell. Proteom. 2007, 6, 624–637.