Referencias bibliográficas
La poderosa combinación de curcumina y Omega-3 para una salud de precisión
- Verma, R. K., et al. (2018). Medicinal properties of turmeric (Curcuma longa L.): A review. J. Chem. Stud, 6 (4), 1354-1357.
- Lal, J. (2012). Turmeric, curcumin and our life: a review. Environ. Pharmacol. Life Sci, 1 (7), 11-17.
- Ahmad, R. S., et al. (2020). Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: a mechanistic review. Evidence-based complementary and alternative medicine, 2020.
- Pintea, A. M. (2007). 5.2 Food Colorants Derived from Natural Sources by Processing. Food colorants: Chemical and functional properties, 329.
- Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19 (12), 20091-20112.
- Sandur, S. K., et al. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 28 (8), 1765-1773.
- Mohanty, C., et al. (2012). Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert opinion on drug delivery, 9 (11), 1347-1364.
- Anand, P., et al. (2007). Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4 (6), 807-818.
- Metzler, M., et al. (2013). Curcumin uptake and metabolism. Biofactors, 39 (1), 14-20.
- Garcea, G., et al. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiology Biomarkers & Prevention, 14 (1), 120-125.
- Ryu, E. K., et al. (2006). Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for β-amyloid plaque imaging. Journal of medicinal chemistry, 49 (20), 6111-6119.
- Wang, Y., et al. (2013). Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neuroscience letters, 557, 112-117.
- Ravindranath, V., & Chandrasekhara, N. (1980). Absorption and tissue distribution of curcumin in rats. Toxicology, 16 (3), 259-265.
- Pan, M. H., et al. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug metabolism and disposition, 27 (4), 486-494.
- Sandur, S. K., et al. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 28 (8), 1765-1773.
- Pfeiffer, E., et al. (2007). Curcuminoids form reactive glucuronides in vitro. Journal of agricultural and food chemistry, 55 (2), 538-544.
- Kim, J. M., et al. (1998). Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1, 2-dimethylhydrazine initiation. Carcinogenesis, 19 (1), 81-85.
- Pari, L., & Murugan, P. (2006). Tetrahydrocurcumin: effect on chloroquine‐mediated oxidative damage in rat kidney.Basic & clinical pharmacology & toxicology, 99 (5), 329-334.
- Ireson, C., et al. (2001). Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer research, 61 (3), 1058-1064.
- Sultana, R. (2012). Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822 (5), 748-752.
- Barone, E., et al. (2009). Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology, 10, 97-108.
- Wang, Y. J., et al. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of pharmaceutical and biomedical analysis, 15 (12), 1867-1876.
- Kurien, B. T., et al. (2007). Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay and drug development technologies, 5 (4), 567-576.
- Kurien, B. T., & Scofield, R. H. (2007). Curcumin/turmeric solubilized in sodium hydroxide inhibits HNE protein modification—an in vitro study. Journal of ethnopharmacology, 110 (2), 368-373.
- Toden, S., & Goel, A. (2017). The Holy Grail of Curcumin and its Efficacy in Various Diseases: Is Bioavailability Truly a Big Concern? Journal of restorative medicine, 6 (1), 27–36.
- Abd El‐Hack, M. E., et al. (2021). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101 (14), 5747-5762.
- Ma, Z., et al. (2019). Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release, 316, 359-380.
- Basnet, P., et al. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. Journal of pharmaceutical sciences, 101 (2), 598-609.
- Lee, W. H., et al. (2014). Recent advances in curcumin nanoformulation for cancer therapy. Expert opinion on drug delivery, 11 (8), 1183-1201.
- Kunwar, A., et al. (2006). Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. Biochimica et Biophysica Acta (BBA)-General Subjects, 1760 (10), 1513-1520.
- Karthikeyan, A., et al. (2020). Nanocurcumin: a promising candidate for therapeutic applications. Frontiers in Pharmacology, 11, 487.
- Ghadiri Amrei, S. M. H., et al. (2023). Preparation, characterization, and antioxidant activity of nanoliposomes-encapsulated turmeric and omega-3. Journal of Food Measurement and Characterization, 1-11.
- Aguilera, E. C., et al. (2022). Comparative Pharmacokinetic of Curcuminoids Formulations with an Omega-3 Fatty Acids Monoglyceride Carrier: A Randomized Cross-Over Triple-Blind Study. Nutrients, 14 (24), 5347.
- Song, J. G., et al. (2022). Lipid/Clay-Based Solid Dispersion Formulation for Improving the Oral Bioavailability of Curcumin. Pharmaceutics, 14 (11), 2269.
- Shoba, G., et al. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica, 64 (04), 353-356.
- Suresh, D., & Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian Journal of Medical Research, 131 (5), 682-691.
- Khopde, S. M., et al. (2000). Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Bioscience, biotechnology, and biochemistry, 64 (3), 503-509.
- Lee, S. H., et al. (2018). Piperine-mediated drug interactions and formulation strategy for piperine: Recent advances and future perspectives. Expert opinion on drug metabolism & toxicology, 14 (1), 43-57.
- Pullaiah, T., et al. (Eds.). (2017). Ethnobotany of India, Volume 4: Western and Central Himalayas. CRC Press.
- Debjit Bhowmik, et al. (2009). Turmeric: a herbal and traditional medicine. Archives of applied science research, 1 (2), 86-108.
- Rana, S., et al. (2011). Living life the natural way–Wheatgrass and Health. Functional foods in health and disease, 1 (11), 444-456.
- Martínez, M., et al. (2020). Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre el riesgo asociado al consumo de complementos alimenticios que contienen curcumina como ingrediente. Revista del Comite Cientifico. 32, 85-112.
- Tasneem, S., et al. (2019). Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological research, 139, 126-140.
- Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current pharmaceutical design, 23 (6), 921-931.
- Abdolahi, M., et al. (2018). A novel combination of ω-3 fatty acids and nano-curcumin modulates interleukin-6 gene expression and high sensitivity C-reactive protein serum levels in patients with migraine: a randomized clinical trial study. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 17 (6), 430-438.
- Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current pharmaceutical design, 23 (6), 921-931.
- Arslan, J., et al. (2020). Early detection and prevention of Alzheimer’s disease: role of oxidative markers and natural antioxidants. Frontiers in Aging Neuroscience, 12, 231.
- Goulart, R. D. A., et al. (2021). Effects of the use of curcumin on ulcerative colitis and Crohn’s disease: A systematic review. Journal of medicinal food, 24 (7), 675-685.
- Ebrahimzadeh, A., et al. (2021). Effects of curcumin supplementation on inflammatory biomarkers in patients with rheumatoid arthritis and ulcerative colitis: a systematic review and meta-analysis. Complementary Therapies in Medicine, 61, 102773.
- Quispe, C., et al. (2022). Therapeutic applications of curcumin in diabetes: a review and perspective. BioMed Research International, 2022.
- Mata, I. R. D., et al. (2021). Benefits of turmeric supplementation for skin health in chronic diseases: a systematic review. Critical Reviews in Food Science and Nutrition, 61 (20), 3421-3435.
- Kunnumakkara, A. B., et al. (2017). Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clinical science, 131 (15), 1781-1799.
- Mansour-Ghanaei, F., et al. (2019). Efficacy of curcumin/turmeric on liver enzymes in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Integrative medicine research, 8 (1), 57–61.
- Razavi, B. M., et al. (2021). A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytotherapy Research, 35 (12), 6489-6513.
- Maulina, T., et al. (2022). The Efficacy of Curcumin Patch as an Adjuvant Therapeutic Agent in Managing Acute Orofacial Pain on the Post-Cleft Lip and Cleft Palate Surgery Patients: A Pragmatic Trial. European Journal of Dentistry.
- Kahkhaie, K. R., et al. (2019). Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology, 27, 885-900.
- Khodadadegan, M. A., et al. (2021). Effects of curcumin on depression and anxiety: a narrative review of the recent clinical data. Studies on Biomarkers and New Targets in Aging Research in Iran: Focus on Turmeric and Curcumin, 283-294.