Referencias bibliográficas

La poderosa combinación de curcumina y Omega-3 para una salud de precisión

  1. Verma, R. K., et al. (2018). Medicinal properties of turmeric (Curcuma longa L.): A review.  J. Chem. Stud(4), 1354-1357.
  2. Lal, J. (2012). Turmeric, curcumin and our life: a review.  Environ. Pharmacol. Life Sci(7), 11-17.
  3. Ahmad, R. S., et al. (2020). Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: a mechanistic review. Evidence-based complementary and alternative medicine2020.
  4. Pintea, A. M. (2007). 5.2 Food Colorants Derived from Natural Sources by Processing. Food colorants: Chemical and functional properties329.
  5. Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules19 (12), 20091-20112.
  6. Sandur, S. K., et al. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis28 (8), 1765-1773.
  7. Mohanty, C., et al. (2012). Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert opinion on drug delivery(11), 1347-1364.
  8. Anand, P., et al. (2007). Bioavailability of curcumin: problems and promises. Molecular pharmaceutics(6), 807-818.
  9. Metzler, M., et al. (2013). Curcumin uptake and metabolism. Biofactors39 (1), 14-20.
  10. Garcea, G., et al. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiology Biomarkers & Prevention14 (1), 120-125.
  11. Ryu, E. K., et al. (2006). Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for β-amyloid plaque imaging. Journal of medicinal chemistry49 (20), 6111-6119.
  12. Wang, Y., et al. (2013). Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neuroscience letters557, 112-117.
  13. Ravindranath, V., & Chandrasekhara, N. (1980). Absorption and tissue distribution of curcumin in rats. Toxicology16 (3), 259-265.
  14. Pan, M. H., et al. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug metabolism and disposition27 (4), 486-494.
  15. Sandur, S. K., et al. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis28 (8), 1765-1773.
  16. Pfeiffer, E., et al. (2007). Curcuminoids form reactive glucuronides in vitro. Journal of agricultural and food chemistry55 (2), 538-544.
  17. Kim, J. M., et al. (1998). Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1, 2-dimethylhydrazine initiation. Carcinogenesis19 (1), 81-85.
  18. Pari, L., & Murugan, P. (2006). Tetrahydrocurcumin: effect on chloroquine‐mediated oxidative damage in rat kidney.Basic & clinical pharmacology & toxicology99 (5), 329-334.
  19. Ireson, C., et al. (2001). Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer research61 (3), 1058-1064.
  20. Sultana, R. (2012). Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease1822 (5), 748-752.
  21. Barone, E., et al. (2009). Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology10, 97-108.
  22. Wang, Y. J., et al. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of pharmaceutical and biomedical analysis15 (12), 1867-1876.
  23. Kurien, B. T., et al. (2007). Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay and drug development technologies(4), 567-576.
  24. Kurien, B. T., & Scofield, R. H. (2007). Curcumin/turmeric solubilized in sodium hydroxide inhibits HNE protein modification—an in vitro study. Journal of ethnopharmacology110 (2), 368-373.
  25. Toden, S., & Goel, A. (2017). The Holy Grail of Curcumin and its Efficacy in Various Diseases: Is Bioavailability Truly a Big Concern? Journal of restorative medicine(1), 27–36.
  26. Abd El‐Hack, M. E., et al. (2021). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture101 (14), 5747-5762.
  27. Ma, Z., et al. (2019). Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release316, 359-380.
  28. Basnet, P., et al. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. Journal of pharmaceutical sciences101 (2), 598-609.
  29. Lee, W. H., et al. (2014). Recent advances in curcumin nanoformulation for cancer therapy. Expert opinion on drug delivery11 (8), 1183-1201.
  30. Kunwar, A., et al. (2006). Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. Biochimica et Biophysica Acta (BBA)-General Subjects1760 (10), 1513-1520.
  31. Karthikeyan, A., et al. (2020). Nanocurcumin: a promising candidate for therapeutic applications. Frontiers in Pharmacology11, 487.
  32. Ghadiri Amrei, S. M. H., et al. (2023). Preparation, characterization, and antioxidant activity of nanoliposomes-encapsulated turmeric and omega-3. Journal of Food Measurement and Characterization, 1-11.
  33. Aguilera, E. C., et al. (2022). Comparative Pharmacokinetic of Curcuminoids Formulations with an Omega-3 Fatty Acids Monoglyceride Carrier: A Randomized Cross-Over Triple-Blind Study. Nutrients14 (24), 5347.
  34. Song, J. G., et al. (2022). Lipid/Clay-Based Solid Dispersion Formulation for Improving the Oral Bioavailability of Curcumin. Pharmaceutics14 (11), 2269.
  35. Shoba, G., et al. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica64 (04), 353-356.
  36. Suresh, D., & Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian Journal of Medical Research131 (5), 682-691.
  37. Khopde, S. M., et al. (2000). Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Bioscience, biotechnology, and biochemistry64 (3), 503-509.
  38. Lee, S. H., et al. (2018). Piperine-mediated drug interactions and formulation strategy for piperine: Recent advances and future perspectives. Expert opinion on drug metabolism & toxicology14 (1), 43-57.
  39. Pullaiah, T., et al. (Eds.). (2017). Ethnobotany of India, Volume 4: Western and Central Himalayas. CRC Press.
  40. Debjit Bhowmik, et al. (2009). Turmeric: a herbal and traditional medicine. Archives of applied science research(2), 86-108.
  41. Rana, S., et al. (2011). Living life the natural way–Wheatgrass and Health. Functional foods in health and disease(11), 444-456.
  42. Martínez, M., et al. (2020). Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre el riesgo asociado al consumo de complementos alimenticios que contienen curcumina como ingrediente. Revista del Comite Cientifico. 32, 85-112.
  43. Tasneem, S., et al. (2019). Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological research139, 126-140.
  44. Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current pharmaceutical design23 (6), 921-931.
  45. Abdolahi, M., et al. (2018). A novel combination of ω-3 fatty acids and nano-curcumin modulates interleukin-6 gene expression and high sensitivity C-reactive protein serum levels in patients with migraine: a randomized clinical trial study. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)17 (6), 430-438.
  46. Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current pharmaceutical design23 (6), 921-931.
  47. Arslan, J., et al. (2020). Early detection and prevention of Alzheimer’s disease: role of oxidative markers and natural antioxidants. Frontiers in Aging Neuroscience12, 231.
  48. Goulart, R. D. A., et al. (2021). Effects of the use of curcumin on ulcerative colitis and Crohn’s disease: A systematic review. Journal of medicinal food24 (7), 675-685.
  49. Ebrahimzadeh, A., et al. (2021). Effects of curcumin supplementation on inflammatory biomarkers in patients with rheumatoid arthritis and ulcerative colitis: a systematic review and meta-analysis. Complementary Therapies in Medicine61, 102773.
  50. Quispe, C., et al. (2022). Therapeutic applications of curcumin in diabetes: a review and perspective. BioMed Research International2022.
  51. Mata, I. R. D., et al. (2021). Benefits of turmeric supplementation for skin health in chronic diseases: a systematic review. Critical Reviews in Food Science and Nutrition61 (20), 3421-3435.
  52. Kunnumakkara, A. B., et al. (2017). Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clinical science131 (15), 1781-1799.
  53. Mansour-Ghanaei, F., et al. (2019). Efficacy of curcumin/turmeric on liver enzymes in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Integrative medicine research(1), 57–61.
  54. Razavi, B. M., et al. (2021). A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytotherapy Research35 (12), 6489-6513.
  55. Maulina, T., et al. (2022). The Efficacy of Curcumin Patch as an Adjuvant Therapeutic Agent in Managing Acute Orofacial Pain on the Post-Cleft Lip and Cleft Palate Surgery Patients: A Pragmatic Trial. European Journal of Dentistry.
  56. Kahkhaie, K. R., et al. (2019). Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology27, 885-900.
  57. Khodadadegan, M. A., et al. (2021). Effects of curcumin on depression and anxiety: a narrative review of the recent clinical data. Studies on Biomarkers and New Targets in Aging Research in Iran: Focus on Turmeric and Curcumin, 283-294.