Referencias bibliográficas

PROTEÍNA SPIKE (sars cov2 Y VACUNA) LESIÓN: PREVENCIÓN Y MANEJO ORTOMOLECULAR

  1. Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., Donahue, J. G., Kharbanda, E. O., Naleway, A., Nelson, J. C., Xu, S., Yih, W. K., Glanz, J. M., Williams, J. T. B., Hambidge, S. J., Lewin, B. J., Shimabukuro, T. T., DeStefano, F., & Weintraub, E. S. (2021). Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA, 326(14), 1390–1399. https://doi.org/10.1001/jama.2021.15072
  2. C. (2020, February 11). Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/global-response-strategy.html
  3. National COVID-19 Preparedness Plan | The White House. (n.d.). The White House. https://www.whitehouse.gov/covidplan/
  4. Coronavirus disease (COVID-19): Vaccines. (n.d.). Coronavirus Disease (COVID-19): Vaccines. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey={adgroupsurvey}&gclid=CjwKCAjw-rOaBhA9EiwAUkLV4iUkZ6-Z3pPhjujSuTHKB00nUeVOtcIXYny4m5sk5Hh83Ysj2TysQxoC2vkQAvD_BwE
  5. Schneider, J., Sottmann, L., Greinacher, A., Hagen, M., Kasper, H. U., Kuhnen, C., Schlepper, S., Schmidt, S., Schulz, R., Thiele, T., Thomas, C., & Schmeling, A. (2021). Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. International journal of legal medicine, 135(6), 2335–2345. https://doi.org/10.1007/s00414-021-02706-9
  6. Maiese, A., Baronti, A., Manetti, A. C., Di Paolo, M., Turillazzi, E., Frati, P., & Fineschi, V. (2022). Death after the Administration of COVID-19 Vaccines Approved by EMA: Has a Causal Relationship Been Demonstrated?. Vaccines, 10(2), 308. https://doi.org/10.3390/vaccines10020308
  7. Kehr, S., Berg, P., Müller, S., Fiedler, S. A., Meyer, B., Ruppert-Seipp, G., Witzenhausen, C., Wolf, M. E., Henkes, H. H., Oberle, D., Keller-Stanislawski, B., & Funk, M. B. (2022). Long-term outcome of patients with vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis. NPJ vaccines, 7(1), 76. https://doi.org/10.1038/s41541-022-00491-z
  8. Sharifian-Dorche, M., Bahmanyar, M., Sharifian-Dorche, A., Mohammadi, P., Nomovi, M., & Mowla, A. (2021). Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination; a systematic review. Journal of the neurological sciences, 428, 117607. https://doi.org/10.1016/j.jns.2021.117607
  9. Román, G. C., Gracia, F., Torres, A., Palacios, A., Gracia, K., & Harris, D. (2021). Acute Transverse Myelitis (ATM):Clinical Review of 43 Patients With COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events With the ChAdOx1 nCoV-19 Vaccine (AZD1222). Frontiers in immunology, 12, 653786. https://doi.org/10.3389/fimmu.2021.653786
  10. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., & China Novel Coronavirus Investigating and Research Team (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
  11. Rosenblum, H. G., Hadler, S. C., Moulia, D., Shimabukuro, T. T., Su, J. R., Tepper, N. K., Ess, K. C., Woo, E. J., Mba-Jonas, A., Alimchandani, M., Nair, N., Klein, N. P., Hanson, K. E., Markowitz, L. E., Wharton, M., McNally, V. V., Romero, J. R., Talbot, H. K., Lee, G. M., Daley, M. F., … Oliver, S. E. (2021). Use of COVID-19 Vaccines After Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices – United States, July 2021. MMWR. Morbidity and mortality weekly report, 70(32), 1094–1099. https://doi.org/10.15585/mmwr.mm7032e4
  12. C. (2020, March 28). COVID Data Tracker. Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker.
  13. Long Term Follow-Up After Administration of Human Gene Therapy Product. (2020, January 30). Long Term Follow-up After Administration of Human Gene Therapy Products | FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/long-term-follow-after-administration-human-gene-therapy-products.
  14. Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (2020). 2022;3(3): e167. doi: 10.1002/mco2.167. PMCID: PMC9409637
  15. Lamb Y. N. (2021). BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs, 81(4), 495–501. https://doi.org/10.1007/s40265-021-01480-7
  16. Tan, S. H. X., Cook, A. R., Heng, D., Ong, B., Lye, D. C., & Tan, K. B. (2022). Effectiveness of BNT162b2 Vaccine against Omicron in Children 5 to 11 Years of Age. The New England journal of medicine, 387(6), 525–532. https://doi.org/10.1056/NEJMoa2203209.
  17. Goldberg, Y., Mandel, M., Bar-On, Y. M., Bodenheimer, O., Freedman, L., Haas, E. J., Milo, R., Alroy-Preis, S., Ash, N., & Huppert, A. (2021). Waning Immunity after the BNT162b2 Vaccine in Israel. The New England journal of medicine, 385(24), e85. https://doi.org/10.1056/NEJMoa2114228.
  18. Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, Doolman R, Asraf K, Mendelson E, Ziv A, Rubin C, Freedman L, Kreiss Y, Regev-Yochay G. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med. 2021 Dec 9;385(24):e84. doi: 10.1056/NEJMoa2114583. Epub 2021 Oct 6. PMID: 34614326; PMCID: PMC8522797.
  19. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, Gallagher E, Thelwall S, Groves N, Dabrera G, Myers R, Campbell CNJ, Amirthalingam G, Edmunds M, Zambon M, Brown K, Hopkins S, Chand M, Ladhani SN, Ramsay M, Lopez Bernal J. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med. 2022 Jan 27;386(4):340-350. doi: 10.1056/NEJMoa2115481. Epub 2022 Jan 12. PMID: 35021002; PMCID: PMC8781262.
  20. Laha, S., Chakraborty, J., Das, S., Manna, S. K., Biswas, S., & Chatterjee, R. (2020). Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 85, 104445. https://doi.org/10.1016/j.meegid.2020.104445
  21. Appelbaum, J., Arnold, D. M., Kelton, J. G., Gernsheimer, T., Jevtic, S. D., Ivetic, N., Smith, J. W., & Nazy, I. (2022). SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccine-induced thrombocytopenia. Blood advances, 6(7), 2250–2253. https://doi.org/10.1182/bloodadvances.2021005050
  22. Ogata, A. F., Cheng, C. A., Desjardins, M., Senussi, Y., Sherman, A. C., Powell, M., Novack, L., Von, S., Li, X., Baden, L. R., & Walt, D. R. (2022). Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 74(4), 715–718. https://doi.org/10.1093/cid/ciab465
  23. Cari, L., Alhosseini, M. N., Fiore, P., Pierno, S., Pacor, S., Bergamo, A., Sava, G., & Nocentini, G. (2021). Cardiovascular, neurological, and pulmonary events following vaccination with the BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: An analysis of European data. Journal of autoimmunity, 125, 102742. https://doi.org/10.1016/j.jaut.2021.102742
  24. Langerak, T., Mumtaz, N., Tolk, V. I., van Gorp, E. C. M., Martina, B. E., Rockx, B., & Koopmans, M. P. G. (2019). The possible role of cross-reactive dengue virus antibodies in Zika virus pathogenesis. PLoS pathogens, 15(4), e1007640. https://doi.org/10.1371/journal.ppat.1007640
  25. Shimizu J, Sasaki J, Koketsu T, Koketsu R, et al. (2022). Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci Rep 12, 15612. https://doi.org/10.1038/s41598-022-19993-w
  26. Gonzalez MJ, Miranda-Massari JR‚ McCullough PA, Marik PE, Kory P, Cole R, Vanden Bossche G, Simone C, Aparicio Alonso M, Prieto Gratacos E, Yanagisawa A, Chen R, Insignares-Carrione E, Peng Z, Rowen RJ, et al. (2022). An International Consensus Report on SARS-Cov-2, COVID-19, and the Immune System: An Orthomolecular View. J Orthomol Med. 37(1), 1-17. https://isom.ca/article/an-international-consensus-report-on-sars-cov-2-covid-19-and-the-immune-system-an-orthomolecular-view/
  27. Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., Hernán, M. A., Lipsitch, M., Kohane, I., Netzer, D., Reis, B. Y., & Balicer, R. D. (2021). Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. The New England journal of medicine, 385(12), 1078–1090. https://doi.org/10.1056/NEJMoa2110475.
  28. García-Grimshaw, M., Ceballos-Liceaga, S. E., Hernández-Vanegas, L. E., Núñez, I., Hernández-Valdivia, N., Carrillo-García, D. A., Michel-Chávez, A., Galnares-Olalde, J. A., Carbajal-Sandoval, G., Del Mar Saniger-Alba, M., Carrillo-Mezo, R. A., Fragoso-Saavedra, S., Espino-Ojeda, A., Blaisdell-Vidal, C., Mosqueda-Gómez, J. L., Sierra-Madero, J., Pérez-Padilla, R., Alomía-Zegarra, J. L., López-Gatell, H., Díaz-Ortega, J. L., … Valdés-Ferrer, S. I. (2021). Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: A nationwide descriptive study. Clinical immunology (Orlando, Fla.), 229, 108786. https://doi.org/10.1016/j.clim.2021.108786
  29. Luo, H., Li, X., Ren, Q., Zhou, Y., Chen, G., Zhao, B., & Li, X. (2022). Acute kidney injury after COVID-19 vaccines: a real-world study. Renal failure, 44(1), 958–965. https://doi.org/10.1080/0886022X.2022.2081180
  30. Motwani R, Deshmukh V, Kumar A, Kumari C, Raza K, Krishna H. Pathological involvement of placenta in COVID-19: a systematic review. Infez Med. 2022 Jun 1;30(2):157-167. doi: 10.53854/liim-3002-1. PMID: 35693050; PMCID: PMC9177177.
  31. Schwartz, D. A., Baldewijns, M., Benachi, A., Bugatti, M., Collins, R. R. J., De Luca, D., Facchetti, F., Linn, R. L., Marcelis, L., Morotti, D., Morotti, R., Parks, W. T., Patanè, L., Prevot, S., Pulinx, B., Rajaram, V., Strybol, D., Thomas, K., & Vivanti, A. J. (2021). Chronic Histiocytic Intervillositis With Trophoblast Necrosis Is a Risk Factor Associated With Placental Infection From Coronavirus Disease 2019 (COVID-19) and Intrauterine Maternal-Fetal Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission in Live-Born and Stillborn Infants. Archives of pathology & laboratory medicine, 145(5), 517–528. https://doi.org/10.5858/arpa.2020-0771-SA
  32. Fitzgerald, B., O’Donoghue, K., McEntagart, N., Gillan, J. E., Kelehan, P., O’Leary, J., Downey, P., Dean, J., De Gascun, C. F., Bermingham, J., Armstrong, F., Al Fathil, A., Maher, N., Murphy, C., & Burke, L. (2022). Fetal Deaths in Ireland Due to SARS-CoV-2 Placentitis Caused by SARS-CoV-2 Alpha. Archives of pathology & laboratory medicine, 146(5), 529–537. https://doi.org/10.5858/arpa.2021-0586-SA
  33. Panigrahi, S., Goswami, T., Ferrari, B., Antonelli, C. J., Bazdar, D. A., Gilmore, H., Freeman, M. L., Lederman, M. M., & Sieg, S. F. (2021). SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Microbiology spectrum, 9(3), e0073521. https://doi.org/10.1128/Spectrum.00735-21
  34. Lazebnik Y. (2021). Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget, 12(25), 2476–2488. https://doi.org/10.18632/oncotarget.28088
  35. Rosell, A., Havervall, S., von Meijenfeldt, F., Hisada, Y., Aguilera, K., Grover, S. P., Lisman, T., Mackman, N., & Thålin, C. (2021). Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality-Brief Report. Arteriosclerosis, thrombosis, and vascular biology, 41(2), 878–882. https://doi.org/10.1161/ATVBAHA.120.315547
  36. Zerboni, L., Sen, N., Oliver, S. L., & Arvin, A. M. (2014). Molecular mechanisms of varicella zoster virus pathogenesis. Nature reviews. Microbiology, 12(3), 197–210. https://doi.org/10.1038/nrmicro3215.
  37. Martinez-Marmol R, Giordano-Santini R, Kaulich E, Cho AN, Riyadh MA, Robinson E, Balistreri G, Meunier FA, Ke YD, Ittner LM, Hilliard MA. (2021) The SARS-CoV-2 spike (S) and the orthoreovirus p15 cause neuronal and glial fusion. bioRxiv. doi: https://doi.org/10.1101/2021.09.01.458544
  38. Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer metastasis reviews, 28(1-2), 85–98. https://doi.org/10.1007/s10555-008-9163-6.
  39. Shang, C., Liu, Z., Zhu, Y., Lu, J., Ge, C., Zhang, C., Li, N., Jin, N., Li, Y., Tian, M., & Li, X. (2022). SARS-CoV-2 Causes Mitochondrial Dysfunction and Mitophagy Impairment. Frontiers in microbiology, 12, 780768. https://doi.org/10.3389/fmicb.2021.780768
  40. Waheed, W., Carey, M. E., Tandan, S. R., & Tandan, R. (2021). Post COVID-19 vaccine small fiber neuropathy. Muscle & nerve, 64(1), E1–E2. https://doi.org/10.1002/mus.27251
  41. De Michele, M., d’Amati, G., Leopizzi, M., Iacobucci, M., Berto, I., Lorenzano, S., Mazzuti, L., Turriziani, O., Schiavo, O. G., & Toni, D. (2022). Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients. Journal of hematology & oncology, 15(1), 108. https://doi.org/10.1186/s13045-022-01329-w
  42. Ostrowski, S. R., Søgaard, O. S., Tolstrup, M., Stærke, N. B., Lundgren, J., Østergaard, L., & Hvas, A. M. (2021). Inflammation and Platelet Activation After COVID-19 Vaccines – Possible Mechanisms Behind Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Frontiers in immunology, 12, 779453. https://doi.org/10.3389/fimmu.2021.779453
  43. Gubernatorova, E. O., Gorshkova, E. A., Polinova, A. I., & Drutskaya, M. S. (2020). IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine & growth factor reviews, 53, 13–24. https://doi.org/10.1016/j.cytogfr.2020.05.009
  44. Kocyigit, A., Sogut, O., Durmus, E., Kanimdan, E., Guler, E. M., Kaplan, O., Yenigun, V. B., Eren, C., Ozman, Z., & Yasar, O. (2021). Circulating furin, IL-6, and presepsin levels and disease severity in SARS-CoV-2-infected patients. Science progress, 104(2_suppl), 368504211026119. https://doi.org/10.1177/00368504211026119
  45. Rahbar Saadat Y, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Front Mol Biosci. 2021 Aug 30;8:725528. doi: 10.3389/fmolb.2021.725528. PMID: 34527703; PMCID: PMC8435734.
  46. Aboudounya, M. M., & Heads, R. J. (2021). COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators of inflammation, 2021, 8874339. https://doi.org/10.1155/2021/8874339
  47. Olejnik, J., Hume, A. J., & Mühlberger, E. (2018). Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS pathogens, 14(12), e1007390. https://doi.org/10.1371/journal.ppat.1007390
  48. Vollbracht, C., & Kraft, K. (2022). Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Frontiers in pharmacology, 13, 899198. https://doi.org/10.3389/fphar.2022.899198
  49. Kornowski, R., & Witberg, G. (2022). Acute myocarditis caused by COVID-19 disease and following COVID-19 vaccination. Open heart, 9(1), e001957. https://doi.org/10.1136/openhrt-2021-001957
  50. Khan, S., Shafiei, M. S., Longoria, C., Schoggins, J. W., Savani, R. C., & Zaki, H. (2021). SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife, 10, e68563. https://doi.org/10.7554/eLife.68563
  51. Patra, T., Meyer, K., Geerling, L., Isbell, T. S., Hoft, D. F., Brien, J., Pinto, A. K., Ray, R. B., & Ray, R. (2020). SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS pathogens, 16(12), e1009128. https://doi.org/10.1371/journal.ppat.1009128
  52. Amir, G., Rotstein, A., Razon, Y., Beyersdorf, G. B., Barak-Corren, Y., Godfrey, M. E., Lakovsky, Y., Yaeger-Yarom, G., Yarden-Bilavsky, H., & Birk, E. (2022). CMR Imaging 6 Months After Myocarditis Associated with the BNT162b2 mRNA COVID-19 Vaccine. Pediatric Cardiology, 43(7), 1522–1529. https://doi.org/10.1007/s00246-022-02878-0
  53. Pillay, J., Gaudet, L., Wingert, A., Bialy, L., Mackie, A. S., Paterson, D. I., & Hartling, L. (2022). Incidence, risk factors, natural history, and hypothesized mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ (Clinical research ed.), 378, e069445. https://doi.org/10.1136/bmj-2021-069445
  54. Marschner, C. A., Shaw, K. E., Tijmes, F. S., Fronza, M., Khullar, S., Seidman, M. A., Thavendiranathan, P., Udell, J. A., Wald, R. M., & Hanneman, K. (2023). Myocarditis Following COVID-19 Vaccination. Heart failure clinics, 19(2), 251–264. https://doi.org/10.1016/j.hfc.2022.08.012
  55. Tano, E., San Martin, S., Girgis, S., Martinez-Fernandez, Y., & Sanchez Vegas, C. (2021). Perimyocarditis in Adolescents After Pfizer-BioNTech COVID-19 Vaccine. Journal of the Pediatric Infectious Diseases Society, 10(10), 962–966. https://doi.org/10.1093/jpids/piab060
  56. Zhang, L., Feng, X., Zhang, D., Jiang, C., Mei, H., Wang, J., Zhang, C., Li, H., Xia, X., Kong, S., Liao, J., Jia, H., Pang, X., Song, Y., Tian, Y., Wang, B., Wu, C., Yuan, H., Zhang, Y., Li, Y., … Xie, M. (2020). Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation, 142(2), 114–128. https://doi.org/10.1161/CIRCULATIONAHA.120.046702.
  57. Philippe, A., Chocron, R., Gendron, N., Bory, O., Beauvais, A., Peron, N., Khider, L., Guerin, C. L., Goudot, G., Levasseur, F., Peronino, C., Duchemin, J., Brichet, J., Sourdeau, E., Desvard, F., Bertil, S., Pene, F., Cheurfa, C., Szwebel, T. A., Planquette, B., … Smadja, D. M. (2021). Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis, 24(3), 505–517. https://doi.org/10.1007/s10456-020-09762-6
  58. Suzuki, Y. J., Nikolaienko, S. I., Dibrova, V. A., Dibrova, Y. V., Vasylyk, V. M., Novikov, M. Y., Shults, N. V., & Gychka, S. G. (2021). SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells. Vascular pharmacology, 137, 106823. https://doi.org/10.1016/j.vph.2020.106823
  59. Satta, S., Lai, A., Cavallero, S., Williamson, C., Chen, J., Blázquez-Medela, A. M., Roustaei, M., Dillon, B. J., Ashammakhi, N., Carlo, D. D., Li, Z., Sun, R., & Hsiai, T. K. (2021). Rapid Detection and Inhibition of SARS-CoV-2-Spike Mutation-Mediated Microthrombosis. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(23), e2103266. https://doi.org/10.1002/advs.202103266
  60. Lee, E. J., Cines, D. B., Gernsheimer, T., Kessler, C., Michel, M., Tarantino, M. D., Semple, J. W., Arnold, D. M., Godeau, B., Lambert, M. P., & Bussel, J. B. (2021). Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. American journal of hematology, 96(5), 534–537. https://doi.org/10.1002/ajh.26132
  61. Grobbelaar, L. M., Venter, C., Vlok, M., Ngoepe, M., Laubscher, G. J., Lourens, P. J., Steenkamp, J., Kell, D. B., & Pretorius, E. (2021). SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Bioscience reports, 41(8), BSR20210611. https://doi.org/10.1042/BSR20210611
  62. Schulz, J. B., Berlit, P., Diener, H. C., Gerloff, C., Greinacher, A., Klein, C., Petzold, G. C., Piccininni, M., Poli, S., Röhrig, R., Steinmetz, H., Thiele, T., Kurth, T., & German Society of Neurology SARS-CoV-2 Vaccination Study Group (2021). COVID-19 Vaccine-Associated Cerebral Venous Thrombosis in Germany. Annals of neurology, 90(4), 627–639. https://doi.org/10.1002/ana.26172
  63. Whiteley, W. N., Ip, S., Cooper, J. A., Bolton, T., Keene, S., Walker, V., Denholm, R., Akbari, A., Omigie, E., Hollings, S., Di Angelantonio, E., Denaxas, S., Wood, A., Sterne, J. A. C., Sudlow, C., & CVD-COVID-UK consortium (2022). Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England. PLoS medicine, 19(2), e1003926. https://doi.org/10.1371/journal.pmed.1003926
  64. Maayan H, Kirgner I, Gutwein O, Herzog-Tzarfati K, Rahimi-Levene N, Koren-Michowitz M, Blickstein D. Acquired thrombotic thrombocytopenic purpura: A rare disease associated with BNT162b2 vaccine. J Thromb Haemost. 2021 Sep;19(9):2314-2317. doi: 10.1111/jth.15420. Epub 2021 Jul 7. PMID: 34105247; PMCID: PMC8237075.
  65. Montgomery, J., Ryan, M., Engler, R., Hoffman, D., McClenathan, B., Collins, L., Loran, D., Hrncir, D., Herring, K., Platzer, M., Adams, N., Sanou, A., & Cooper, L. T., Jr (2021). Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA cardiology, 6(10), 1202–1206. https://doi.org/10.1001/jamacardio.2021.2833
  66. Ramalingam, S., Arora, H., Lewis, S., Gunasekaran, K., Muruganandam, M., Nagaraju, S., & Padmanabhan, P. (2021). COVID-19 vaccine-induced cellulitis and myositis. Cleveland Clinic journal of medicine, 88(12), 648–650. https://doi.org/10.3949/ccjm.88a.21038
  67. Terán Brage, E., Roldán Ruíz, J., González Martín, J., Oviedo Rodríguez, J. D., Vidal Tocino, R., Rodríguez Diego, S., Sánchez Hernández, P. L., Bellido Hernández, L., & Fonseca Sánchez, E. (2022). Fulminant myocarditis in a patient with a lung adenocarcinoma after the third dose of modern COVID-19 vaccine. A case report and literature review. Current problems in cancer. Case reports, 6, 100153. https://doi.org/10.1016/j.cpccr.2022.100153
  68. Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, E. J., Nadir, E., Olsha-Castell, S., Arad, D., Hasin, T., Levi, N., Asleh, R., Amir, O., Meir, K., Cohen, D., Dichtiar, R., Novick, D., Hershkovitz, Y., Dagan, R., Leitersdorf, I., Ben-Ami, R., … Alroy-Preis, S. (2021). Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. The New England journal of medicine, 385(23), 2140–2149. https://doi.org/10.1056/NEJMoa2109730
  69. Singh, A., Nguyen, L., Everest, S., Afzal, S., & Shim, A. (2022). Acute Pericarditis Post mRNA-1273 COVID Vaccine Booster. Cureus, 14(2), e22148. https://doi.org/10.7759/cureus.22148
  70. Panou, E., Nikolaou, V., Marinos, L., Kallambou, S., Sidiropoulou, P., Gerochristou, M., & Stratigos, A. (2022). Recurrence of cutaneous T-cell lymphoma post viral vector COVID-19 vaccination. Journal of the European Academy of Dermatology and Venereology : JEADV, 36(2), e91–e93. https://doi.org/10.1111/jdv.17736
  71. Magro, C., Crowson, A. N., Franks, L., Schaffer, P. R., Whelan, P., & Nuovo, G. (2021). The histologic and molecular correlates of COVID-19 vaccine-induced changes in the skin. Clinics in dermatology, 39(6), 966–984. https://doi.org/10.1016/j.clindermatol.2021.07.011
  72. Sriwastava, S., Shrestha, A. K., Khalid, S. H., Colantonio, M. A., Nwafor, D., & Srivastava, S. (2021). Spectrum of Neuroimaging Findings in Post-COVID-19 Vaccination: A Case Series and Review of Literature. Neurology international, 13(4), 622–639. https://doi.org/10.3390/neurolint13040061
  73. Mazraani, M., & Barbari, A. (2021). Anti-Coronavirus Disease 2019 Vaccines: Need for Informed Consent. Experimental and clinical transplantation: official journal of the Middle East Society for Organ Transplantation, 19(8), 753–762. https://doi.org/10.6002/ect.2021.0235
  74. Covid-19 Vaccines. (2021). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases.
  75. Pliss A, Kuzmin AN, Prasad PN, Mahajan SD. Mitochondrial Dysfunction: A Prelude to Neuropathogenesis of SARS-CoV-2. ACS Chem Neurosci. 2022 Feb 2;13(3):308-312. doi: 10.1021/acschemneuro.1c00675. Epub 2022 Jan 20. PMID: 35049274; PMCID: PMC8790819.
  76. Shi, T. T., Yang, F. Y., Liu, C., Cao, X., Lu, J., Zhang, X. L., Yuan, M. X., Chen, C., & Yang, J. K. (2018). Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells. Biochemical and biophysical research communications, 495(1), 860–866. https://doi.org/10.1016/j.bbrc.2017.11.055
  77. Singh, K. K., Chaubey, G., Chen, J. Y., & Suravajhala, P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. American journal of physiology. Cell physiology, 319(2), C258–C267. https://doi.org/10.1152/ajpcell.00224.2020
  78. Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E. R., Lutolf, M. P., Aebersold, R., Schoonjans, K., Menzies, K. J., & Auwerx, J. (2016). NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (New York, N.Y.), 352(6292), 1436–1443. https://doi.org/10.1126/science.aaf2693.
  79. Cantó, C., Menzies, K. J., & Auwerx, J. (2015). NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell metabolism, 22(1), 31–53. https://doi.org/10.1016/j.cmet.2015.05.023
  80. Hanson, K. E., Goddard, K., Lewis, N., Fireman, B., Myers, T. R., Bakshi, N., Weintraub, E., Donahue, J. G., Nelson, J. C., Xu, S., Glanz, J. M., Williams, J., Alpern, J. D., & Klein, N. P. (2022). Incidence of Guillain-Barré Syndrome After COVID-19 Vaccination in the Vaccine Safety Datalink. JAMA network open, 5(4), e228879. https://doi.org/10.1001/jamanetworkopen.2022.8879
  81. Stefano, G. B., Ptacek, R., Ptackova, H., Martin, A., & Kream, R. M. (2021). Selective Neuronal Mitochondrial Targeting in SARS-CoV-2 Infection Affects Cognitive Processes to Induce ‘Brain Fog’ and Results in Behavioral Changes that Favor Viral Survival. Medical science monitor : international medical journal of experimental and clinical research, 27, e930886. https://doi.org/10.12659/MSM.930886
  82. Saleh, J., Peyssonnaux, C., Singh, K. K., & Edeas, M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 54, 1–7. https://doi.org/10.1016/j.mito.2020.06.008
  83. Hamblin M. R. (2018). Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and photobiology, 94(2), 199–212. https://doi.org/10.1111/php.12864
  84. Aguida, B., Pooam, M., Ahmad, M., & Jourdan, N. (2021). Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19. Communicative & integrative biology, 14(1), 200–211. https://doi.org/10.1080/19420889.2021.1965718
  85. Nonarath, H. J., Hall, A. E., SenthilKumar, G., Abroe, B., Eells, J. T., & Liedhegner, E. S. (2021). 670nm photobiomodulation modulates bioenergetics and oxidative stress, in rat Müller cells challenged with high glucose. PloS one, 16(12), e0260968. https://doi.org/10.1371/journal.pone.0260968
  86. Aver Vanin, A., De Marchi, T., Tomazoni, S. S., Tairova, O., Leão Casalechi, H., de Tarso Camillo de Carvalho, P., Bjordal, J. M., & Leal-Junior, E. C. (2016). Pre-Exercise Infrared Low-Level Laser Therapy (810 nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans, What Is the Optimal Dose? A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Photomedicine and laser surgery, 34(10), 473–482. https://doi.org/10.1089/pho.2015.3992
  87. Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., Song, J., Wang, S., Chao, Y., Yang, Z., Xu, J., Zhou, X., Chen, D., Xiong, W., Xu, L., … Song, Y. (2020). Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA internal medicine, 180(7), 934–943. https://doi.org/10.1001/jamainternmed.2020.0994
  88. Ballard, K. D., Quann, E. E., Kupchak, B. R., Volk, B. M., Kawiecki, D. M., Fernandez, M. L., Seip, R. L., Maresh, C. M., Kraemer, W. J., & Volek, J. S. (2013). Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins. Nutrition research (New York, N.Y.), 33(11), 905–912. https://doi.org/10.1016/j.nutres.2013.07.022
  89. Um, C. Y., Hodge, R. A., Tran, H. Q., Campbell, P. T., Gewirtz, A. T., & McCullough, M. L. (2022). Association of Emulsifier and Highly Processed Food Intake with Circulating Markers of Intestinal Permeability and Inflammation in the Cancer Prevention Study-3 Diet Assessment Sub-Study. Nutrition and cancer, 74(5), 1701–1711. https://doi.org/10.1080/01635581.2021.1957947
  90. Barnard, N. D., Goldman, D. M., Loomis, J. F., Kahleova, H., Levin, S. M., Neabore, S., & Batts, T. C. (2019). Plant-Based Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients, 11(1), 130. https://doi.org/10.3390/nu11010130
  91. Muszyńska, B., Grzywacz-Kisielewska, A., Kała, K., & Gdula-Argasińska, J. (2018). Anti-inflammatory properties of edible mushrooms: A review. Food chemistry, 243, 373–381. https://doi.org/10.1016/j.foodchem.2017.09.149
  92. Hills, R. D., Jr, Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 11(7), 1613. https://doi.org/10.3390/nu11071613
  93. Patterson, R. E., Laughlin, G. A., LaCroix, A. Z., Hartman, S. J., Natarajan, L., Senger, C. M., Martínez, M. E., Villaseñor, A., Sears, D. D., Marinac, C. R., & Gallo, L. C. (2015). Intermittent Fasting and Human Metabolic Health. Journal of the Academy of Nutrition and Dietetics, 115(8), 1203–1212. https://doi.org/10.1016/j.jand.2015.02.018
  94. Longo, V. D., & Mattson, M. P. (2014). Fasting: molecular mechanisms and clinical applications. Cell metabolism, 19(2), 181–192. https://doi.org/10.1016/j.cmet.2013.12.008
  95. Gnoni, M., Beas, R., & Vásquez-Garagatti, R. (2021). Is there any role of intermittent fasting in the prevention and improving clinical outcomes of COVID-19?: intersection between inflammation, mTOR pathway, autophagy and calorie restriction. Virusdisease, 32(4), 625–634. https://doi.org/10.1007/s13337-021-00703-5
  96. Mattson, M. P., Longo, V. D., & Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing research reviews, 39, 46–58. https://doi.org/10.1016/j.arr.2016.10.005
  97. Peña Crespo A, Miranda Massari JR, Rodriguez JR, Berdiel M, Olalde J, Gonzalez MJ. (2022) Intermittent Fasting and Cancer. J of Restorative Medicine, 22(12):1-7.
  98. Reider, C. A., Chung, R. Y., Devarshi, P. P., Grant, R. W., & Hazels Mitmesser, S. (2020). Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005-2016 NHANES. Nutrients, 12(6), 1735. https://doi.org/10.3390/nu12061735
  99. Medicine (US) Food and Nutrition Board, I. O. (1998, January 1). What are Dietary Reference Intakes? – Dietary Reference Intakes – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK45182/
  100. Rhodes, J. M., Subramanian, S., Laird, E., Griffin, G., & Kenny, R. A. (2021). Perspective: Vitamin D deficiency and COVID-19 severity – plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. Journal of internal medicine, 289(1), 97–115. https://doi.org/10.1111/joim.13149
  101. Fu, Y., Wang, Y., Gao, H., Li, D., Jiang, R., Ge, L., Tong, C., & Xu, K. (2021). Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators of inflammation, 2021, 8879227. https://doi.org/10.1155/2021/8879227
  102. Shakoor, H., Feehan, J., Al Dhaheri, A. S., Ali, H. I., Platat, C., Ismail, L. C., Apostolopoulos, V., & Stojanovska, L. (2021). Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?. Maturitas, 143, 1–9. https://doi.org/10.1016/j.maturitas.2020.08.003
  103. Laird, E., McNulty, H., Ward, M., Hoey, L., McSorley, E., Wallace, J. M., Carson, E., Molloy, A. M., Healy, M., Casey, M. C., Cunningham, C., & Strain, J. J. (2014). Vitamin D deficiency is associated with inflammation in older Irish adults. The Journal of clinical endocrinology and metabolism, 99(5), 1807–1815. https://doi.org/10.1210/jc.2013-3507
  104. Wimalawansa S. J. (2018). Vitamin D and cardiovascular diseases: Causality. The Journal of steroid biochemistry and molecular biology, 175, 29–43. https://doi.org/10.1016/j.jsbmb.2016.12.016
  105. Miranda-Massari, J. R., Toro, A. P., Loh, D., Rodriguez, J. R., Borges, R. M., Marcial-Vega, V., Olalde, J., Berdiel, M. J., Riordan, N. H., Martinez, J. M., Gil, A., & Gonzalez, M. J. (2021). The Effects of Vitamin C on the Multiple Pathophysiological Stages of COVID-19. Life (Basel, Switzerland), 11(12), 1341. https://doi.org/10.3390/life11121341
  106. Holford, P., Carr, A. C., Jovic, T. H., Ali, S. R., Whitaker, I. S., Marik, P. E., & Smith, A. D. (2020). Vitamin C-An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients, 12(12), 3760. https://doi.org/10.3390/nu12123760
  107. Sagar, S., Rathinavel, A. K., Lutz, W. E., Struble, L. R., Khurana, S., Schnaubelt, A. T., Mishra, N. K., Guda, C., Broadhurst, M. J., Reid, S. P. M., Bayles, K. W., Borgstahl, G. E. O., & Radhakrishnan, P. (2020). Bromelain Inhibits SARS-CoV-2 Infection in VeroE6 Cells. bioRxiv : the preprint server for biology, 2020.09.16.297366. https://doi.org/10.1101/2020.09.16.297366
  108. Felton G. E. (1980). Fibrinolytic and antithrombotic action of bromelain may eliminate thrombosis in heart patients. Medical hypotheses, 6(11), 1123–1133. https://doi.org/10.1016/0306-9877(80)90134-6
  109. Sagar, S., Rathinavel, A. K., Lutz, W. E., Struble, L. R., Khurana, S., Schnaubelt, A. T., Mishra, N. K., Guda, C., Palermo, N. Y., Broadhurst, M. J., Hoffmann, T., Bayles, K. W., Reid, S. P. M., Borgstahl, G. E. O., & Radhakrishnan, P. (2021). Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein. Clinical and translational medicine, 11(2), e281. https://doi.org/10.1002/ctm2.281
  110. Saeedi-Boroujeni, A., Mahmoudian-Sani, M. R., Bahadoram, M., & Alghasi, A. (2021). COVID-19: A Case for Inhibiting NLRP3 Inflammasome, Suppression of Inflammation with Curcumin?. Basic & clinical pharmacology & toxicology, 128(1), 37–45. https://doi.org/10.1111/bcpt.13503
  111. Kritis, P., Karampela, I., Kokoris, S., & Dalamaga, M. (2020). The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabolism open, 8, 100066. https://doi.org/10.1016/j.metop.2020.100066
  112. Gomaa, A. A., Mohamed, H. S., Abd-Ellatief, R. B., & Gomaa, M. A. (2021). Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology, 29(4), 1033–1048. https://doi.org/10.1007/s10787-021-00841-8
  113. Marangoni, F., & Poli, A. (2013). Clinical pharmacology of n-3 polyunsaturated fatty acids: non-lipidic metabolic and hemodynamic effects in human patients. Atherosclerosis. Supplements, 14(2), 230–236. https://doi.org/10.1016/S1567-5688(13)70003-5
  114. Saldeen, T., Li, D., & Mehta, J. L. (1999). Differential effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. Journal of the American College of Cardiology, 34(4), 1208–1215. https://doi.org/10.1016/s0735-1097(99)00333-2
  115. Singh, I., Turner, A. H., Sinclair, A. J., Li, D., & Hawley, J. A. (2007). Effects of gamma-tocopherol supplementation on thrombotic risk factors. Asia Pacific journal of clinical nutrition, 16(3), 422–428.
  116. Wu, H., Wang, Y., Zhang, Y., Xu, F., Chen, J., Duan, L., Zhang, T., Wang, J., & Zhang, F. (2020). Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox biology, 32, 101500. https://doi.org/10.1016/j.redox.2020.101500
  117. Chen, H., Chen, J., Zhang, F., Li, Y., Wang, R., Zheng, Q., Zhang, X., Zeng, J., Xu, F., & Lin, Y. (2022). Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: A clinical study with 1,062 participants. Frontiers in cardiovascular medicine, 9, 964977. https://doi.org/10.3389/fcvm.2022.964977
  118. Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, Hamaoka T. (2015). A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep, 25;5:11601. doi: 10.1038/srep11601. PMID: 26109079; PMCID: PMC4479826.
  119. Tanikawa, T., Kiba, Y., Yu, J., Hsu, K., Chen, S., Ishii, A., Yokogawa, T., Suzuki, R., Inoue, Y., & Kitamura, M. (2022). Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2. Molecules (Basel, Switzerland), 27(17), 5405. https://doi.org/10.3390/molecules27175405
  120. Altay, O., Arif, M., Li, X., Yang, H., Aydın, M., Alkurt, G., Kim, W., Akyol, D., Zhang, C., Dinler-Doganay, G., Turkez, H., Shoaie, S., Nielsen, J., Borén, J., Olmuscelik, O., Doganay, L., Uhlén, M., & Mardinoglu, A. (2021). Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(17), e2101222. https://doi.org/10.1002/advs.202101222
  121. Shoenfeld Y, Agmon-Levin N (2011) ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 36:4–8
  122. Watad A, Sharif K, Shoenfeld Y (2017) The ASIA syndrome: basic concepts. Mediterr J Rheumatol 28(2):64–69
  123. Chung YH, Beiss V, Fiering SN, Steinmetz NF (2020) COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano 14(10):12522–12537
  124. Bragazzi NL, Ashraf Hejly A, Watad A, Adawi M, Amital H, Shoenfeld Y (2020) ASIA syndrome and endocrine autoimmune disorders. Best Pract Res Clin Endocrinol Metab 34(1):101412.
  125. Pujol, A., Gómez, L. A., Gallegos, C., Nicolau, J., Sanchís, P., González-Freire, M., López-González, Á. A., Dotres, K., & Masmiquel, L. (2022). Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis. Journal of endocrinological investigation, 45(4), 875–882. https://doi.org/10.1007/s40618-021-01707-0
  126. World Health Organization. (2020, June 1). 10 chemicals of Public Health Concern. https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern. Accessed on 9_29_2022.
  127. World Health Organization. (2022, November 28). World Health Organization. (2020, June 1). Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_1. Accessed on 12_12_2022.
  128. Peters, A., Nawrot, T. S., & Baccarelli, A. A. (2021). Hallmarks of environmental insults. Cell, 184(6), 1455–1468. https://doi.org/10.1016/j.cell.2021.01.043
  129. Stickl H. A. (1991). Schädigung des Immunsystems über kontaminierte Nahrung durch Umweltgifte [Injury to the immune system by food contaminated by environmental toxins]. Zentralblatt fur Hygiene und Umweltmedizin = International journal of hygiene and environmental medicine, 191(2-3), 232–240.
  130. Morita, K., Ogata, M., & Hasegawa, T. (2001). Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. Environmental health perspectives, 109(3), 289–294. https://doi.org/10.1289/ehp.01109289
  131. Uchikawa, T., Ueno, T., Hasegawa, T., Maruyama, I., Kumamoto, S., & Ando, Y. (2009). Parachlorella beyerinckii accelerates lead excretion in mice. Toxicology and industrial health, 25(8), 551–556. https://doi.org/10.1177/0748233709346759
  132. Uchikawa, T., Maruyama, I., Kumamoto, S., Ando, Y., & Yasutake, A. (2011). Chlorella suppresses methylmercury transfer to the fetus in pregnant mice. The Journal of toxicological sciences, 36(5), 675–680. https://doi.org/10.2131/jts.36.675
  133. Queiroz, M. L., da Rocha, M. C., Torello, C. O., de Souza Queiroz, J., Bincoletto, C., Morgano, M. A., Romano, M. R., Paredes-Gamero, E. J., Barbosa, C. M., & Calgarotto, A. K. (2011). Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 49(11), 2934–2941. https://doi.org/10.1016/j.fct.2011.06.056
  134. Merino, J. J., Parmigiani-Izquierdo, J. M., Toledano Gasca, A., & Cabaña-Muñoz, M. E. (2019). The Long-Term Algae Extract (Chlorella and Fucus sp) and Aminosulphurate Supplementation Modulate SOD-1 Activity and Decrease Heavy Metals (Hg++, Sn) Levels in Patients with Long-Term Dental Titanium Implants and Amalgam Fillings Restorations. Antioxidants (Basel, Switzerland), 8(4), 101. https://doi.org/10.3390/antiox8040101
  135. Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochimica et biophysica acta, 1790(10), 1149–1160. https://doi.org/10.1016/j.bbagen.2009.07.026
  136. Bjørklund, G., Crisponi, G., Nurchi, V. M., Cappai, R., Buha Djordjevic, A., & Aaseth, J. (2019). A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead. Molecules (Basel, Switzerland), 24(18), 3247. https://doi.org/10.3390/molecules24183247
  137. Mastinu, A., Kumar, A., Maccarinelli, G., Bonini, S. A., Premoli, M., Aria, F., Gianoncelli, A., & Memo, M. (2019). Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules (Basel, Switzerland), 24(8), 1517. https://doi.org/10.3390/molecules24081517
  138. Beltcheva, M., Metcheva, R., Popov, N., Teodorova, S. E., Heredia-Rojas, J. A., Rodríguez-de la Fuente, A. O., Rodríguez-Flores, L. E., & Topashka-Ancheva, M. (2012). Modified natural clinoptilolite detoxifies small mammal’s organism loaded with lead I. Lead disposition and kinetic model for lead bioaccumulation. Biological trace element research, 147(1-3), 180–188. https://doi.org/10.1007/s12011-011-9278-4
  139. Johnson, P. L., Kochin, B. F., McAfee, M. S., Stromnes, I. M., Regoes, R. R., Ahmed, R., Blattman, J. N., & Antia, R. (2011). Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. Journal of virology, 85(11), 5565–5570. https://doi.org/10.1128/JVI.00166-11
  140. Sugishita, Y., Nakayama, T., Sugawara, T., & Ohkusa, Y. (2020). Negative effect on immune response of repeated influenza vaccination and waning effectiveness in interseason for elderly people. Vaccine, 38(21), 3759–3765. https://doi.org/10.1016/j.vaccine.2020.03.025
  141. Khurana, S., Hahn, M., Coyle, E. M., King, L. R., Lin, T. L., Treanor, J., Sant, A., & Golding, H. (2019). Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans. Nature communications, 10(1), 3338. https://doi.org/10.1038/s41467-019-11296-5
  142. Kwong, J. C., Chung, H., Jung, J. K., Buchan, S. A., Campigotto, A., Campitelli, M. A., Crowcroft, N. S., Gubbay, J. B., Karnauchow, T., Katz, K., McGeer, A. J., McNally, J. D., Richardson, D. C., Richardson, S. E., Rosella, L. C., Schwartz, K. L., Simor, A., Smieja, M., Zahariadis, G., & Canadian Immunization Research Network (CIRN) investigators (2020). The impact of repeated vaccination using 10-year vaccination history on protection against influenza in older adults: a test-negative design study across the 2010/11 to 2015/16 influenza seasons in Ontario, Canada. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(1), 1900245. https://doi.org/10.2807/1560-7917.ES.2020.25.1.1900245
  143. McLean, H. Q., Thompson, M. G., Sundaram, M. E., Meece, J. K., McClure, D. L., Friedrich, T. C., & Belongia, E. A. (2014). Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 59(10), 1375–1385. https://doi.org/10.1093/cid/ciu680
  144. Murphy, B. R., & Whitehead, S. S. (2011). Immune response to dengue virus and prospects for a vaccine. Annual review of immunology, 29, 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315
  145. Fulginiti, V. A., Eller, J. J., Sieber, O. F., Joyner, J. W., Minamitani, M., & Meiklejohn, G. (1969). Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. American journal of epidemiology, 89(4), 435–448. https://doi.org/10.1093/oxfordjournals.aje.a120956
  146. Naaber, P., Tserel, L., Kangro, K., Sepp, E., Jürjenson, V., Adamson, A., Haljasmägi, L., Rumm, A. P., Maruste, R., Kärner, J., Gerhold, J. M., Planken, A., Ustav, M., Kisand, K., & Peterson, P. (2021). Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. The Lancet regional health. Europe, 10, 100208. https://doi.org/10.1016/j.lanepe.2021.100208
  147. Tetro J. A. (2020). Is COVID-19 receiving ADE from other coronaviruses?. Microbes and infection, 22(2), 72–73. https://doi.org/10.1016/j.micinf.2020.02.006
  148. Sánchez-Zuno, G. A., Matuz-Flores, M. G., González-Estevez, G., Nicoletti, F., Turrubiates-Hernández, F. J., Mangano, K., & Muñoz-Valle, J. F. (2021). A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. International journal of immunopathology and pharmacology, 35, 20587384211050199. https://doi.org/10.1177/20587384211050199
  149. Pecora, F., Persico, F., Argentiero, A., Neglia, C., & Esposito, S. (2020). The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients, 12(10), 3198. https://doi.org/10.3390/nu12103198
  150. Tourkochristou, E., Triantos, C., & Mouzaki, A. (2021). The Influence of Nutritional Factors on Immunological Outcomes. Frontiers in immunology, 12, 665968. https://doi.org/10.3389/fimmu.2021.665968
  151. DiNicolantonio, J. J., & O’Keefe, J. H. (2021). Magnesium and Vitamin D Deficiency as a Potential Cause of Immune Dysfunction, Cytokine Storm and Disseminated Intravascular Coagulation in covid-19 patients. Missouri medicine, 118(1), 68–73.
  152. Tian, J., Tang, L., Liu, X., Li, Y., Chen, J., Huang, W., & Liu, M. (2022). Populations in Low-Magnesium Areas Were Associated with Higher Risk of Infection in COVID-19’s Early Transmission: A Nationwide Retrospective Cohort Study in the United States. Nutrients, 14(4), 909. https://doi.org/10.3390/nu14040909
  153. Poe, F. L., & Corn, J. (2020). N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Medical hypotheses, 143, 109862. https://doi.org/10.1016/j.mehy.2020.109862
  154. Pawar, A., Russo, M., Rani, I., Goswami, K., Russo, G. L., & Pal, A. (2022). A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytotherapy research : PTR, 36(6), 2394–2415. https://doi.org/10.1002/ptr.7461
  155. Rea, I. M., & Alexander, H. D. (2022). Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing research reviews, 73, 101494. https://doi.org/10.1016/j.arr.2021.101494
  156. Liao, M. T., Wu, C. C., Wu, S. V., Lee, M. C., Hu, W. C., Tsai, K. W., Yang, C. H., Lu, C. L., Chiu, S. K., & Lu, K. C. (2021). Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel, Switzerland), 10(9), 1440. https://doi.org/10.3390/antiox10091440