Referencias bibliográficas
PROTEÍNA SPIKE (sars cov2 Y VACUNA) LESIÓN: PREVENCIÓN Y MANEJO ORTOMOLECULAR
- Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., Donahue, J. G., Kharbanda, E. O., Naleway, A., Nelson, J. C., Xu, S., Yih, W. K., Glanz, J. M., Williams, J. T. B., Hambidge, S. J., Lewin, B. J., Shimabukuro, T. T., DeStefano, F., & Weintraub, E. S. (2021). Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA, 326(14), 1390–1399. https://doi.org/10.1001/jama.2021.15072
- C. (2020, February 11). Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/global-response-strategy.html
- National COVID-19 Preparedness Plan | The White House. (n.d.). The White House. https://www.whitehouse.gov/covidplan/
- Coronavirus disease (COVID-19): Vaccines. (n.d.). Coronavirus Disease (COVID-19): Vaccines. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey={adgroupsurvey}&gclid=CjwKCAjw-rOaBhA9EiwAUkLV4iUkZ6-Z3pPhjujSuTHKB00nUeVOtcIXYny4m5sk5Hh83Ysj2TysQxoC2vkQAvD_BwE
- Schneider, J., Sottmann, L., Greinacher, A., Hagen, M., Kasper, H. U., Kuhnen, C., Schlepper, S., Schmidt, S., Schulz, R., Thiele, T., Thomas, C., & Schmeling, A. (2021). Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. International journal of legal medicine, 135(6), 2335–2345. https://doi.org/10.1007/s00414-021-02706-9
- Maiese, A., Baronti, A., Manetti, A. C., Di Paolo, M., Turillazzi, E., Frati, P., & Fineschi, V. (2022). Death after the Administration of COVID-19 Vaccines Approved by EMA: Has a Causal Relationship Been Demonstrated?. Vaccines, 10(2), 308. https://doi.org/10.3390/vaccines10020308
- Kehr, S., Berg, P., Müller, S., Fiedler, S. A., Meyer, B., Ruppert-Seipp, G., Witzenhausen, C., Wolf, M. E., Henkes, H. H., Oberle, D., Keller-Stanislawski, B., & Funk, M. B. (2022). Long-term outcome of patients with vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis. NPJ vaccines, 7(1), 76. https://doi.org/10.1038/s41541-022-00491-z
- Sharifian-Dorche, M., Bahmanyar, M., Sharifian-Dorche, A., Mohammadi, P., Nomovi, M., & Mowla, A. (2021). Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination; a systematic review. Journal of the neurological sciences, 428, 117607. https://doi.org/10.1016/j.jns.2021.117607
- Román, G. C., Gracia, F., Torres, A., Palacios, A., Gracia, K., & Harris, D. (2021). Acute Transverse Myelitis (ATM):Clinical Review of 43 Patients With COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events With the ChAdOx1 nCoV-19 Vaccine (AZD1222). Frontiers in immunology, 12, 653786. https://doi.org/10.3389/fimmu.2021.653786
- Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., & China Novel Coronavirus Investigating and Research Team (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
- Rosenblum, H. G., Hadler, S. C., Moulia, D., Shimabukuro, T. T., Su, J. R., Tepper, N. K., Ess, K. C., Woo, E. J., Mba-Jonas, A., Alimchandani, M., Nair, N., Klein, N. P., Hanson, K. E., Markowitz, L. E., Wharton, M., McNally, V. V., Romero, J. R., Talbot, H. K., Lee, G. M., Daley, M. F., … Oliver, S. E. (2021). Use of COVID-19 Vaccines After Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices – United States, July 2021. MMWR. Morbidity and mortality weekly report, 70(32), 1094–1099. https://doi.org/10.15585/mmwr.mm7032e4
- C. (2020, March 28). COVID Data Tracker. Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker.
- Long Term Follow-Up After Administration of Human Gene Therapy Product. (2020, January 30). Long Term Follow-up After Administration of Human Gene Therapy Products | FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/long-term-follow-after-administration-human-gene-therapy-products.
- Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (2020). 2022;3(3): e167. doi: 10.1002/mco2.167. PMCID: PMC9409637
- Lamb Y. N. (2021). BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs, 81(4), 495–501. https://doi.org/10.1007/s40265-021-01480-7
- Tan, S. H. X., Cook, A. R., Heng, D., Ong, B., Lye, D. C., & Tan, K. B. (2022). Effectiveness of BNT162b2 Vaccine against Omicron in Children 5 to 11 Years of Age. The New England journal of medicine, 387(6), 525–532. https://doi.org/10.1056/NEJMoa2203209.
- Goldberg, Y., Mandel, M., Bar-On, Y. M., Bodenheimer, O., Freedman, L., Haas, E. J., Milo, R., Alroy-Preis, S., Ash, N., & Huppert, A. (2021). Waning Immunity after the BNT162b2 Vaccine in Israel. The New England journal of medicine, 385(24), e85. https://doi.org/10.1056/NEJMoa2114228.
- Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, Doolman R, Asraf K, Mendelson E, Ziv A, Rubin C, Freedman L, Kreiss Y, Regev-Yochay G. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med. 2021 Dec 9;385(24):e84. doi: 10.1056/NEJMoa2114583. Epub 2021 Oct 6. PMID: 34614326; PMCID: PMC8522797.
- Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, Gallagher E, Thelwall S, Groves N, Dabrera G, Myers R, Campbell CNJ, Amirthalingam G, Edmunds M, Zambon M, Brown K, Hopkins S, Chand M, Ladhani SN, Ramsay M, Lopez Bernal J. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med. 2022 Jan 27;386(4):340-350. doi: 10.1056/NEJMoa2115481. Epub 2022 Jan 12. PMID: 35021002; PMCID: PMC8781262.
- Laha, S., Chakraborty, J., Das, S., Manna, S. K., Biswas, S., & Chatterjee, R. (2020). Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 85, 104445. https://doi.org/10.1016/j.meegid.2020.104445
- Appelbaum, J., Arnold, D. M., Kelton, J. G., Gernsheimer, T., Jevtic, S. D., Ivetic, N., Smith, J. W., & Nazy, I. (2022). SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccine-induced thrombocytopenia. Blood advances, 6(7), 2250–2253. https://doi.org/10.1182/bloodadvances.2021005050
- Ogata, A. F., Cheng, C. A., Desjardins, M., Senussi, Y., Sherman, A. C., Powell, M., Novack, L., Von, S., Li, X., Baden, L. R., & Walt, D. R. (2022). Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 74(4), 715–718. https://doi.org/10.1093/cid/ciab465
- Cari, L., Alhosseini, M. N., Fiore, P., Pierno, S., Pacor, S., Bergamo, A., Sava, G., & Nocentini, G. (2021). Cardiovascular, neurological, and pulmonary events following vaccination with the BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: An analysis of European data. Journal of autoimmunity, 125, 102742. https://doi.org/10.1016/j.jaut.2021.102742
- Langerak, T., Mumtaz, N., Tolk, V. I., van Gorp, E. C. M., Martina, B. E., Rockx, B., & Koopmans, M. P. G. (2019). The possible role of cross-reactive dengue virus antibodies in Zika virus pathogenesis. PLoS pathogens, 15(4), e1007640. https://doi.org/10.1371/journal.ppat.1007640
- Shimizu J, Sasaki J, Koketsu T, Koketsu R, et al. (2022). Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci Rep 12, 15612. https://doi.org/10.1038/s41598-022-19993-w
- Gonzalez MJ, Miranda-Massari JR‚ McCullough PA, Marik PE, Kory P, Cole R, Vanden Bossche G, Simone C, Aparicio Alonso M, Prieto Gratacos E, Yanagisawa A, Chen R, Insignares-Carrione E, Peng Z, Rowen RJ, et al. (2022). An International Consensus Report on SARS-Cov-2, COVID-19, and the Immune System: An Orthomolecular View. J Orthomol Med. 37(1), 1-17. https://isom.ca/article/an-international-consensus-report-on-sars-cov-2-covid-19-and-the-immune-system-an-orthomolecular-view/
- Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., Hernán, M. A., Lipsitch, M., Kohane, I., Netzer, D., Reis, B. Y., & Balicer, R. D. (2021). Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. The New England journal of medicine, 385(12), 1078–1090. https://doi.org/10.1056/NEJMoa2110475.
- García-Grimshaw, M., Ceballos-Liceaga, S. E., Hernández-Vanegas, L. E., Núñez, I., Hernández-Valdivia, N., Carrillo-García, D. A., Michel-Chávez, A., Galnares-Olalde, J. A., Carbajal-Sandoval, G., Del Mar Saniger-Alba, M., Carrillo-Mezo, R. A., Fragoso-Saavedra, S., Espino-Ojeda, A., Blaisdell-Vidal, C., Mosqueda-Gómez, J. L., Sierra-Madero, J., Pérez-Padilla, R., Alomía-Zegarra, J. L., López-Gatell, H., Díaz-Ortega, J. L., … Valdés-Ferrer, S. I. (2021). Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: A nationwide descriptive study. Clinical immunology (Orlando, Fla.), 229, 108786. https://doi.org/10.1016/j.clim.2021.108786
- Luo, H., Li, X., Ren, Q., Zhou, Y., Chen, G., Zhao, B., & Li, X. (2022). Acute kidney injury after COVID-19 vaccines: a real-world study. Renal failure, 44(1), 958–965. https://doi.org/10.1080/0886022X.2022.2081180
- Motwani R, Deshmukh V, Kumar A, Kumari C, Raza K, Krishna H. Pathological involvement of placenta in COVID-19: a systematic review. Infez Med. 2022 Jun 1;30(2):157-167. doi: 10.53854/liim-3002-1. PMID: 35693050; PMCID: PMC9177177.
- Schwartz, D. A., Baldewijns, M., Benachi, A., Bugatti, M., Collins, R. R. J., De Luca, D., Facchetti, F., Linn, R. L., Marcelis, L., Morotti, D., Morotti, R., Parks, W. T., Patanè, L., Prevot, S., Pulinx, B., Rajaram, V., Strybol, D., Thomas, K., & Vivanti, A. J. (2021). Chronic Histiocytic Intervillositis With Trophoblast Necrosis Is a Risk Factor Associated With Placental Infection From Coronavirus Disease 2019 (COVID-19) and Intrauterine Maternal-Fetal Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Transmission in Live-Born and Stillborn Infants. Archives of pathology & laboratory medicine, 145(5), 517–528. https://doi.org/10.5858/arpa.2020-0771-SA
- Fitzgerald, B., O’Donoghue, K., McEntagart, N., Gillan, J. E., Kelehan, P., O’Leary, J., Downey, P., Dean, J., De Gascun, C. F., Bermingham, J., Armstrong, F., Al Fathil, A., Maher, N., Murphy, C., & Burke, L. (2022). Fetal Deaths in Ireland Due to SARS-CoV-2 Placentitis Caused by SARS-CoV-2 Alpha. Archives of pathology & laboratory medicine, 146(5), 529–537. https://doi.org/10.5858/arpa.2021-0586-SA
- Panigrahi, S., Goswami, T., Ferrari, B., Antonelli, C. J., Bazdar, D. A., Gilmore, H., Freeman, M. L., Lederman, M. M., & Sieg, S. F. (2021). SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Microbiology spectrum, 9(3), e0073521. https://doi.org/10.1128/Spectrum.00735-21
- Lazebnik Y. (2021). Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget, 12(25), 2476–2488. https://doi.org/10.18632/oncotarget.28088
- Rosell, A., Havervall, S., von Meijenfeldt, F., Hisada, Y., Aguilera, K., Grover, S. P., Lisman, T., Mackman, N., & Thålin, C. (2021). Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality-Brief Report. Arteriosclerosis, thrombosis, and vascular biology, 41(2), 878–882. https://doi.org/10.1161/ATVBAHA.120.315547
- Zerboni, L., Sen, N., Oliver, S. L., & Arvin, A. M. (2014). Molecular mechanisms of varicella zoster virus pathogenesis. Nature reviews. Microbiology, 12(3), 197–210. https://doi.org/10.1038/nrmicro3215.
- Martinez-Marmol R, Giordano-Santini R, Kaulich E, Cho AN, Riyadh MA, Robinson E, Balistreri G, Meunier FA, Ke YD, Ittner LM, Hilliard MA. (2021) The SARS-CoV-2 spike (S) and the orthoreovirus p15 cause neuronal and glial fusion. bioRxiv. doi: https://doi.org/10.1101/2021.09.01.458544
- Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer metastasis reviews, 28(1-2), 85–98. https://doi.org/10.1007/s10555-008-9163-6.
- Shang, C., Liu, Z., Zhu, Y., Lu, J., Ge, C., Zhang, C., Li, N., Jin, N., Li, Y., Tian, M., & Li, X. (2022). SARS-CoV-2 Causes Mitochondrial Dysfunction and Mitophagy Impairment. Frontiers in microbiology, 12, 780768. https://doi.org/10.3389/fmicb.2021.780768
- Waheed, W., Carey, M. E., Tandan, S. R., & Tandan, R. (2021). Post COVID-19 vaccine small fiber neuropathy. Muscle & nerve, 64(1), E1–E2. https://doi.org/10.1002/mus.27251
- De Michele, M., d’Amati, G., Leopizzi, M., Iacobucci, M., Berto, I., Lorenzano, S., Mazzuti, L., Turriziani, O., Schiavo, O. G., & Toni, D. (2022). Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients. Journal of hematology & oncology, 15(1), 108. https://doi.org/10.1186/s13045-022-01329-w
- Ostrowski, S. R., Søgaard, O. S., Tolstrup, M., Stærke, N. B., Lundgren, J., Østergaard, L., & Hvas, A. M. (2021). Inflammation and Platelet Activation After COVID-19 Vaccines – Possible Mechanisms Behind Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Frontiers in immunology, 12, 779453. https://doi.org/10.3389/fimmu.2021.779453
- Gubernatorova, E. O., Gorshkova, E. A., Polinova, A. I., & Drutskaya, M. S. (2020). IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine & growth factor reviews, 53, 13–24. https://doi.org/10.1016/j.cytogfr.2020.05.009
- Kocyigit, A., Sogut, O., Durmus, E., Kanimdan, E., Guler, E. M., Kaplan, O., Yenigun, V. B., Eren, C., Ozman, Z., & Yasar, O. (2021). Circulating furin, IL-6, and presepsin levels and disease severity in SARS-CoV-2-infected patients. Science progress, 104(2_suppl), 368504211026119. https://doi.org/10.1177/00368504211026119
- Rahbar Saadat Y, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Front Mol Biosci. 2021 Aug 30;8:725528. doi: 10.3389/fmolb.2021.725528. PMID: 34527703; PMCID: PMC8435734.
- Aboudounya, M. M., & Heads, R. J. (2021). COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators of inflammation, 2021, 8874339. https://doi.org/10.1155/2021/8874339
- Olejnik, J., Hume, A. J., & Mühlberger, E. (2018). Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS pathogens, 14(12), e1007390. https://doi.org/10.1371/journal.ppat.1007390
- Vollbracht, C., & Kraft, K. (2022). Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. Frontiers in pharmacology, 13, 899198. https://doi.org/10.3389/fphar.2022.899198
- Kornowski, R., & Witberg, G. (2022). Acute myocarditis caused by COVID-19 disease and following COVID-19 vaccination. Open heart, 9(1), e001957. https://doi.org/10.1136/openhrt-2021-001957
- Khan, S., Shafiei, M. S., Longoria, C., Schoggins, J. W., Savani, R. C., & Zaki, H. (2021). SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife, 10, e68563. https://doi.org/10.7554/eLife.68563
- Patra, T., Meyer, K., Geerling, L., Isbell, T. S., Hoft, D. F., Brien, J., Pinto, A. K., Ray, R. B., & Ray, R. (2020). SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS pathogens, 16(12), e1009128. https://doi.org/10.1371/journal.ppat.1009128
- Amir, G., Rotstein, A., Razon, Y., Beyersdorf, G. B., Barak-Corren, Y., Godfrey, M. E., Lakovsky, Y., Yaeger-Yarom, G., Yarden-Bilavsky, H., & Birk, E. (2022). CMR Imaging 6 Months After Myocarditis Associated with the BNT162b2 mRNA COVID-19 Vaccine. Pediatric Cardiology, 43(7), 1522–1529. https://doi.org/10.1007/s00246-022-02878-0
- Pillay, J., Gaudet, L., Wingert, A., Bialy, L., Mackie, A. S., Paterson, D. I., & Hartling, L. (2022). Incidence, risk factors, natural history, and hypothesized mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ (Clinical research ed.), 378, e069445. https://doi.org/10.1136/bmj-2021-069445
- Marschner, C. A., Shaw, K. E., Tijmes, F. S., Fronza, M., Khullar, S., Seidman, M. A., Thavendiranathan, P., Udell, J. A., Wald, R. M., & Hanneman, K. (2023). Myocarditis Following COVID-19 Vaccination. Heart failure clinics, 19(2), 251–264. https://doi.org/10.1016/j.hfc.2022.08.012
- Tano, E., San Martin, S., Girgis, S., Martinez-Fernandez, Y., & Sanchez Vegas, C. (2021). Perimyocarditis in Adolescents After Pfizer-BioNTech COVID-19 Vaccine. Journal of the Pediatric Infectious Diseases Society, 10(10), 962–966. https://doi.org/10.1093/jpids/piab060
- Zhang, L., Feng, X., Zhang, D., Jiang, C., Mei, H., Wang, J., Zhang, C., Li, H., Xia, X., Kong, S., Liao, J., Jia, H., Pang, X., Song, Y., Tian, Y., Wang, B., Wu, C., Yuan, H., Zhang, Y., Li, Y., … Xie, M. (2020). Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation, 142(2), 114–128. https://doi.org/10.1161/CIRCULATIONAHA.120.046702.
- Philippe, A., Chocron, R., Gendron, N., Bory, O., Beauvais, A., Peron, N., Khider, L., Guerin, C. L., Goudot, G., Levasseur, F., Peronino, C., Duchemin, J., Brichet, J., Sourdeau, E., Desvard, F., Bertil, S., Pene, F., Cheurfa, C., Szwebel, T. A., Planquette, B., … Smadja, D. M. (2021). Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis, 24(3), 505–517. https://doi.org/10.1007/s10456-020-09762-6
- Suzuki, Y. J., Nikolaienko, S. I., Dibrova, V. A., Dibrova, Y. V., Vasylyk, V. M., Novikov, M. Y., Shults, N. V., & Gychka, S. G. (2021). SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells. Vascular pharmacology, 137, 106823. https://doi.org/10.1016/j.vph.2020.106823
- Satta, S., Lai, A., Cavallero, S., Williamson, C., Chen, J., Blázquez-Medela, A. M., Roustaei, M., Dillon, B. J., Ashammakhi, N., Carlo, D. D., Li, Z., Sun, R., & Hsiai, T. K. (2021). Rapid Detection and Inhibition of SARS-CoV-2-Spike Mutation-Mediated Microthrombosis. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(23), e2103266. https://doi.org/10.1002/advs.202103266
- Lee, E. J., Cines, D. B., Gernsheimer, T., Kessler, C., Michel, M., Tarantino, M. D., Semple, J. W., Arnold, D. M., Godeau, B., Lambert, M. P., & Bussel, J. B. (2021). Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. American journal of hematology, 96(5), 534–537. https://doi.org/10.1002/ajh.26132
- Grobbelaar, L. M., Venter, C., Vlok, M., Ngoepe, M., Laubscher, G. J., Lourens, P. J., Steenkamp, J., Kell, D. B., & Pretorius, E. (2021). SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Bioscience reports, 41(8), BSR20210611. https://doi.org/10.1042/BSR20210611
- Schulz, J. B., Berlit, P., Diener, H. C., Gerloff, C., Greinacher, A., Klein, C., Petzold, G. C., Piccininni, M., Poli, S., Röhrig, R., Steinmetz, H., Thiele, T., Kurth, T., & German Society of Neurology SARS-CoV-2 Vaccination Study Group (2021). COVID-19 Vaccine-Associated Cerebral Venous Thrombosis in Germany. Annals of neurology, 90(4), 627–639. https://doi.org/10.1002/ana.26172
- Whiteley, W. N., Ip, S., Cooper, J. A., Bolton, T., Keene, S., Walker, V., Denholm, R., Akbari, A., Omigie, E., Hollings, S., Di Angelantonio, E., Denaxas, S., Wood, A., Sterne, J. A. C., Sudlow, C., & CVD-COVID-UK consortium (2022). Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England. PLoS medicine, 19(2), e1003926. https://doi.org/10.1371/journal.pmed.1003926
- Maayan H, Kirgner I, Gutwein O, Herzog-Tzarfati K, Rahimi-Levene N, Koren-Michowitz M, Blickstein D. Acquired thrombotic thrombocytopenic purpura: A rare disease associated with BNT162b2 vaccine. J Thromb Haemost. 2021 Sep;19(9):2314-2317. doi: 10.1111/jth.15420. Epub 2021 Jul 7. PMID: 34105247; PMCID: PMC8237075.
- Montgomery, J., Ryan, M., Engler, R., Hoffman, D., McClenathan, B., Collins, L., Loran, D., Hrncir, D., Herring, K., Platzer, M., Adams, N., Sanou, A., & Cooper, L. T., Jr (2021). Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA cardiology, 6(10), 1202–1206. https://doi.org/10.1001/jamacardio.2021.2833
- Ramalingam, S., Arora, H., Lewis, S., Gunasekaran, K., Muruganandam, M., Nagaraju, S., & Padmanabhan, P. (2021). COVID-19 vaccine-induced cellulitis and myositis. Cleveland Clinic journal of medicine, 88(12), 648–650. https://doi.org/10.3949/ccjm.88a.21038
- Terán Brage, E., Roldán Ruíz, J., González Martín, J., Oviedo Rodríguez, J. D., Vidal Tocino, R., Rodríguez Diego, S., Sánchez Hernández, P. L., Bellido Hernández, L., & Fonseca Sánchez, E. (2022). Fulminant myocarditis in a patient with a lung adenocarcinoma after the third dose of modern COVID-19 vaccine. A case report and literature review. Current problems in cancer. Case reports, 6, 100153. https://doi.org/10.1016/j.cpccr.2022.100153
- Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, E. J., Nadir, E., Olsha-Castell, S., Arad, D., Hasin, T., Levi, N., Asleh, R., Amir, O., Meir, K., Cohen, D., Dichtiar, R., Novick, D., Hershkovitz, Y., Dagan, R., Leitersdorf, I., Ben-Ami, R., … Alroy-Preis, S. (2021). Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. The New England journal of medicine, 385(23), 2140–2149. https://doi.org/10.1056/NEJMoa2109730
- Singh, A., Nguyen, L., Everest, S., Afzal, S., & Shim, A. (2022). Acute Pericarditis Post mRNA-1273 COVID Vaccine Booster. Cureus, 14(2), e22148. https://doi.org/10.7759/cureus.22148
- Panou, E., Nikolaou, V., Marinos, L., Kallambou, S., Sidiropoulou, P., Gerochristou, M., & Stratigos, A. (2022). Recurrence of cutaneous T-cell lymphoma post viral vector COVID-19 vaccination. Journal of the European Academy of Dermatology and Venereology : JEADV, 36(2), e91–e93. https://doi.org/10.1111/jdv.17736
- Magro, C., Crowson, A. N., Franks, L., Schaffer, P. R., Whelan, P., & Nuovo, G. (2021). The histologic and molecular correlates of COVID-19 vaccine-induced changes in the skin. Clinics in dermatology, 39(6), 966–984. https://doi.org/10.1016/j.clindermatol.2021.07.011
- Sriwastava, S., Shrestha, A. K., Khalid, S. H., Colantonio, M. A., Nwafor, D., & Srivastava, S. (2021). Spectrum of Neuroimaging Findings in Post-COVID-19 Vaccination: A Case Series and Review of Literature. Neurology international, 13(4), 622–639. https://doi.org/10.3390/neurolint13040061
- Mazraani, M., & Barbari, A. (2021). Anti-Coronavirus Disease 2019 Vaccines: Need for Informed Consent. Experimental and clinical transplantation: official journal of the Middle East Society for Organ Transplantation, 19(8), 753–762. https://doi.org/10.6002/ect.2021.0235
- Covid-19 Vaccines. (2021). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases.
- Pliss A, Kuzmin AN, Prasad PN, Mahajan SD. Mitochondrial Dysfunction: A Prelude to Neuropathogenesis of SARS-CoV-2. ACS Chem Neurosci. 2022 Feb 2;13(3):308-312. doi: 10.1021/acschemneuro.1c00675. Epub 2022 Jan 20. PMID: 35049274; PMCID: PMC8790819.
- Shi, T. T., Yang, F. Y., Liu, C., Cao, X., Lu, J., Zhang, X. L., Yuan, M. X., Chen, C., & Yang, J. K. (2018). Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells. Biochemical and biophysical research communications, 495(1), 860–866. https://doi.org/10.1016/j.bbrc.2017.11.055
- Singh, K. K., Chaubey, G., Chen, J. Y., & Suravajhala, P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. American journal of physiology. Cell physiology, 319(2), C258–C267. https://doi.org/10.1152/ajpcell.00224.2020
- Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E. R., Lutolf, M. P., Aebersold, R., Schoonjans, K., Menzies, K. J., & Auwerx, J. (2016). NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (New York, N.Y.), 352(6292), 1436–1443. https://doi.org/10.1126/science.aaf2693.
- Cantó, C., Menzies, K. J., & Auwerx, J. (2015). NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell metabolism, 22(1), 31–53. https://doi.org/10.1016/j.cmet.2015.05.023
- Hanson, K. E., Goddard, K., Lewis, N., Fireman, B., Myers, T. R., Bakshi, N., Weintraub, E., Donahue, J. G., Nelson, J. C., Xu, S., Glanz, J. M., Williams, J., Alpern, J. D., & Klein, N. P. (2022). Incidence of Guillain-Barré Syndrome After COVID-19 Vaccination in the Vaccine Safety Datalink. JAMA network open, 5(4), e228879. https://doi.org/10.1001/jamanetworkopen.2022.8879
- Stefano, G. B., Ptacek, R., Ptackova, H., Martin, A., & Kream, R. M. (2021). Selective Neuronal Mitochondrial Targeting in SARS-CoV-2 Infection Affects Cognitive Processes to Induce ‘Brain Fog’ and Results in Behavioral Changes that Favor Viral Survival. Medical science monitor : international medical journal of experimental and clinical research, 27, e930886. https://doi.org/10.12659/MSM.930886
- Saleh, J., Peyssonnaux, C., Singh, K. K., & Edeas, M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 54, 1–7. https://doi.org/10.1016/j.mito.2020.06.008
- Hamblin M. R. (2018). Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and photobiology, 94(2), 199–212. https://doi.org/10.1111/php.12864
- Aguida, B., Pooam, M., Ahmad, M., & Jourdan, N. (2021). Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19. Communicative & integrative biology, 14(1), 200–211. https://doi.org/10.1080/19420889.2021.1965718
- Nonarath, H. J., Hall, A. E., SenthilKumar, G., Abroe, B., Eells, J. T., & Liedhegner, E. S. (2021). 670nm photobiomodulation modulates bioenergetics and oxidative stress, in rat Müller cells challenged with high glucose. PloS one, 16(12), e0260968. https://doi.org/10.1371/journal.pone.0260968
- Aver Vanin, A., De Marchi, T., Tomazoni, S. S., Tairova, O., Leão Casalechi, H., de Tarso Camillo de Carvalho, P., Bjordal, J. M., & Leal-Junior, E. C. (2016). Pre-Exercise Infrared Low-Level Laser Therapy (810 nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans, What Is the Optimal Dose? A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Photomedicine and laser surgery, 34(10), 473–482. https://doi.org/10.1089/pho.2015.3992
- Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., Song, J., Wang, S., Chao, Y., Yang, Z., Xu, J., Zhou, X., Chen, D., Xiong, W., Xu, L., … Song, Y. (2020). Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA internal medicine, 180(7), 934–943. https://doi.org/10.1001/jamainternmed.2020.0994
- Ballard, K. D., Quann, E. E., Kupchak, B. R., Volk, B. M., Kawiecki, D. M., Fernandez, M. L., Seip, R. L., Maresh, C. M., Kraemer, W. J., & Volek, J. S. (2013). Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins. Nutrition research (New York, N.Y.), 33(11), 905–912. https://doi.org/10.1016/j.nutres.2013.07.022
- Um, C. Y., Hodge, R. A., Tran, H. Q., Campbell, P. T., Gewirtz, A. T., & McCullough, M. L. (2022). Association of Emulsifier and Highly Processed Food Intake with Circulating Markers of Intestinal Permeability and Inflammation in the Cancer Prevention Study-3 Diet Assessment Sub-Study. Nutrition and cancer, 74(5), 1701–1711. https://doi.org/10.1080/01635581.2021.1957947
- Barnard, N. D., Goldman, D. M., Loomis, J. F., Kahleova, H., Levin, S. M., Neabore, S., & Batts, T. C. (2019). Plant-Based Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients, 11(1), 130. https://doi.org/10.3390/nu11010130
- Muszyńska, B., Grzywacz-Kisielewska, A., Kała, K., & Gdula-Argasińska, J. (2018). Anti-inflammatory properties of edible mushrooms: A review. Food chemistry, 243, 373–381. https://doi.org/10.1016/j.foodchem.2017.09.149
- Hills, R. D., Jr, Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 11(7), 1613. https://doi.org/10.3390/nu11071613
- Patterson, R. E., Laughlin, G. A., LaCroix, A. Z., Hartman, S. J., Natarajan, L., Senger, C. M., Martínez, M. E., Villaseñor, A., Sears, D. D., Marinac, C. R., & Gallo, L. C. (2015). Intermittent Fasting and Human Metabolic Health. Journal of the Academy of Nutrition and Dietetics, 115(8), 1203–1212. https://doi.org/10.1016/j.jand.2015.02.018
- Longo, V. D., & Mattson, M. P. (2014). Fasting: molecular mechanisms and clinical applications. Cell metabolism, 19(2), 181–192. https://doi.org/10.1016/j.cmet.2013.12.008
- Gnoni, M., Beas, R., & Vásquez-Garagatti, R. (2021). Is there any role of intermittent fasting in the prevention and improving clinical outcomes of COVID-19?: intersection between inflammation, mTOR pathway, autophagy and calorie restriction. Virusdisease, 32(4), 625–634. https://doi.org/10.1007/s13337-021-00703-5
- Mattson, M. P., Longo, V. D., & Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing research reviews, 39, 46–58. https://doi.org/10.1016/j.arr.2016.10.005
- Peña Crespo A, Miranda Massari JR, Rodriguez JR, Berdiel M, Olalde J, Gonzalez MJ. (2022) Intermittent Fasting and Cancer. J of Restorative Medicine, 22(12):1-7.
- Reider, C. A., Chung, R. Y., Devarshi, P. P., Grant, R. W., & Hazels Mitmesser, S. (2020). Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005-2016 NHANES. Nutrients, 12(6), 1735. https://doi.org/10.3390/nu12061735
- Medicine (US) Food and Nutrition Board, I. O. (1998, January 1). What are Dietary Reference Intakes? – Dietary Reference Intakes – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK45182/
- Rhodes, J. M., Subramanian, S., Laird, E., Griffin, G., & Kenny, R. A. (2021). Perspective: Vitamin D deficiency and COVID-19 severity – plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. Journal of internal medicine, 289(1), 97–115. https://doi.org/10.1111/joim.13149
- Fu, Y., Wang, Y., Gao, H., Li, D., Jiang, R., Ge, L., Tong, C., & Xu, K. (2021). Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators of inflammation, 2021, 8879227. https://doi.org/10.1155/2021/8879227
- Shakoor, H., Feehan, J., Al Dhaheri, A. S., Ali, H. I., Platat, C., Ismail, L. C., Apostolopoulos, V., & Stojanovska, L. (2021). Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?. Maturitas, 143, 1–9. https://doi.org/10.1016/j.maturitas.2020.08.003
- Laird, E., McNulty, H., Ward, M., Hoey, L., McSorley, E., Wallace, J. M., Carson, E., Molloy, A. M., Healy, M., Casey, M. C., Cunningham, C., & Strain, J. J. (2014). Vitamin D deficiency is associated with inflammation in older Irish adults. The Journal of clinical endocrinology and metabolism, 99(5), 1807–1815. https://doi.org/10.1210/jc.2013-3507
- Wimalawansa S. J. (2018). Vitamin D and cardiovascular diseases: Causality. The Journal of steroid biochemistry and molecular biology, 175, 29–43. https://doi.org/10.1016/j.jsbmb.2016.12.016
- Miranda-Massari, J. R., Toro, A. P., Loh, D., Rodriguez, J. R., Borges, R. M., Marcial-Vega, V., Olalde, J., Berdiel, M. J., Riordan, N. H., Martinez, J. M., Gil, A., & Gonzalez, M. J. (2021). The Effects of Vitamin C on the Multiple Pathophysiological Stages of COVID-19. Life (Basel, Switzerland), 11(12), 1341. https://doi.org/10.3390/life11121341
- Holford, P., Carr, A. C., Jovic, T. H., Ali, S. R., Whitaker, I. S., Marik, P. E., & Smith, A. D. (2020). Vitamin C-An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients, 12(12), 3760. https://doi.org/10.3390/nu12123760
- Sagar, S., Rathinavel, A. K., Lutz, W. E., Struble, L. R., Khurana, S., Schnaubelt, A. T., Mishra, N. K., Guda, C., Broadhurst, M. J., Reid, S. P. M., Bayles, K. W., Borgstahl, G. E. O., & Radhakrishnan, P. (2020). Bromelain Inhibits SARS-CoV-2 Infection in VeroE6 Cells. bioRxiv : the preprint server for biology, 2020.09.16.297366. https://doi.org/10.1101/2020.09.16.297366
- Felton G. E. (1980). Fibrinolytic and antithrombotic action of bromelain may eliminate thrombosis in heart patients. Medical hypotheses, 6(11), 1123–1133. https://doi.org/10.1016/0306-9877(80)90134-6
- Sagar, S., Rathinavel, A. K., Lutz, W. E., Struble, L. R., Khurana, S., Schnaubelt, A. T., Mishra, N. K., Guda, C., Palermo, N. Y., Broadhurst, M. J., Hoffmann, T., Bayles, K. W., Reid, S. P. M., Borgstahl, G. E. O., & Radhakrishnan, P. (2021). Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein. Clinical and translational medicine, 11(2), e281. https://doi.org/10.1002/ctm2.281
- Saeedi-Boroujeni, A., Mahmoudian-Sani, M. R., Bahadoram, M., & Alghasi, A. (2021). COVID-19: A Case for Inhibiting NLRP3 Inflammasome, Suppression of Inflammation with Curcumin?. Basic & clinical pharmacology & toxicology, 128(1), 37–45. https://doi.org/10.1111/bcpt.13503
- Kritis, P., Karampela, I., Kokoris, S., & Dalamaga, M. (2020). The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabolism open, 8, 100066. https://doi.org/10.1016/j.metop.2020.100066
- Gomaa, A. A., Mohamed, H. S., Abd-Ellatief, R. B., & Gomaa, M. A. (2021). Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology, 29(4), 1033–1048. https://doi.org/10.1007/s10787-021-00841-8
- Marangoni, F., & Poli, A. (2013). Clinical pharmacology of n-3 polyunsaturated fatty acids: non-lipidic metabolic and hemodynamic effects in human patients. Atherosclerosis. Supplements, 14(2), 230–236. https://doi.org/10.1016/S1567-5688(13)70003-5
- Saldeen, T., Li, D., & Mehta, J. L. (1999). Differential effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. Journal of the American College of Cardiology, 34(4), 1208–1215. https://doi.org/10.1016/s0735-1097(99)00333-2
- Singh, I., Turner, A. H., Sinclair, A. J., Li, D., & Hawley, J. A. (2007). Effects of gamma-tocopherol supplementation on thrombotic risk factors. Asia Pacific journal of clinical nutrition, 16(3), 422–428.
- Wu, H., Wang, Y., Zhang, Y., Xu, F., Chen, J., Duan, L., Zhang, T., Wang, J., & Zhang, F. (2020). Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox biology, 32, 101500. https://doi.org/10.1016/j.redox.2020.101500
- Chen, H., Chen, J., Zhang, F., Li, Y., Wang, R., Zheng, Q., Zhang, X., Zeng, J., Xu, F., & Lin, Y. (2022). Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: A clinical study with 1,062 participants. Frontiers in cardiovascular medicine, 9, 964977. https://doi.org/10.3389/fcvm.2022.964977
- Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, Hamaoka T. (2015). A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep, 25;5:11601. doi: 10.1038/srep11601. PMID: 26109079; PMCID: PMC4479826.
- Tanikawa, T., Kiba, Y., Yu, J., Hsu, K., Chen, S., Ishii, A., Yokogawa, T., Suzuki, R., Inoue, Y., & Kitamura, M. (2022). Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2. Molecules (Basel, Switzerland), 27(17), 5405. https://doi.org/10.3390/molecules27175405
- Altay, O., Arif, M., Li, X., Yang, H., Aydın, M., Alkurt, G., Kim, W., Akyol, D., Zhang, C., Dinler-Doganay, G., Turkez, H., Shoaie, S., Nielsen, J., Borén, J., Olmuscelik, O., Doganay, L., Uhlén, M., & Mardinoglu, A. (2021). Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(17), e2101222. https://doi.org/10.1002/advs.202101222
- Shoenfeld Y, Agmon-Levin N (2011) ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 36:4–8
- Watad A, Sharif K, Shoenfeld Y (2017) The ASIA syndrome: basic concepts. Mediterr J Rheumatol 28(2):64–69
- Chung YH, Beiss V, Fiering SN, Steinmetz NF (2020) COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano 14(10):12522–12537
- Bragazzi NL, Ashraf Hejly A, Watad A, Adawi M, Amital H, Shoenfeld Y (2020) ASIA syndrome and endocrine autoimmune disorders. Best Pract Res Clin Endocrinol Metab 34(1):101412.
- Pujol, A., Gómez, L. A., Gallegos, C., Nicolau, J., Sanchís, P., González-Freire, M., López-González, Á. A., Dotres, K., & Masmiquel, L. (2022). Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis. Journal of endocrinological investigation, 45(4), 875–882. https://doi.org/10.1007/s40618-021-01707-0
- World Health Organization. (2020, June 1). 10 chemicals of Public Health Concern. https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern. Accessed on 9_29_2022.
- World Health Organization. (2022, November 28). World Health Organization. (2020, June 1). Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_1. Accessed on 12_12_2022.
- Peters, A., Nawrot, T. S., & Baccarelli, A. A. (2021). Hallmarks of environmental insults. Cell, 184(6), 1455–1468. https://doi.org/10.1016/j.cell.2021.01.043
- Stickl H. A. (1991). Schädigung des Immunsystems über kontaminierte Nahrung durch Umweltgifte [Injury to the immune system by food contaminated by environmental toxins]. Zentralblatt fur Hygiene und Umweltmedizin = International journal of hygiene and environmental medicine, 191(2-3), 232–240.
- Morita, K., Ogata, M., & Hasegawa, T. (2001). Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. Environmental health perspectives, 109(3), 289–294. https://doi.org/10.1289/ehp.01109289
- Uchikawa, T., Ueno, T., Hasegawa, T., Maruyama, I., Kumamoto, S., & Ando, Y. (2009). Parachlorella beyerinckii accelerates lead excretion in mice. Toxicology and industrial health, 25(8), 551–556. https://doi.org/10.1177/0748233709346759
- Uchikawa, T., Maruyama, I., Kumamoto, S., Ando, Y., & Yasutake, A. (2011). Chlorella suppresses methylmercury transfer to the fetus in pregnant mice. The Journal of toxicological sciences, 36(5), 675–680. https://doi.org/10.2131/jts.36.675
- Queiroz, M. L., da Rocha, M. C., Torello, C. O., de Souza Queiroz, J., Bincoletto, C., Morgano, M. A., Romano, M. R., Paredes-Gamero, E. J., Barbosa, C. M., & Calgarotto, A. K. (2011). Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 49(11), 2934–2941. https://doi.org/10.1016/j.fct.2011.06.056
- Merino, J. J., Parmigiani-Izquierdo, J. M., Toledano Gasca, A., & Cabaña-Muñoz, M. E. (2019). The Long-Term Algae Extract (Chlorella and Fucus sp) and Aminosulphurate Supplementation Modulate SOD-1 Activity and Decrease Heavy Metals (Hg++, Sn) Levels in Patients with Long-Term Dental Titanium Implants and Amalgam Fillings Restorations. Antioxidants (Basel, Switzerland), 8(4), 101. https://doi.org/10.3390/antiox8040101
- Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochimica et biophysica acta, 1790(10), 1149–1160. https://doi.org/10.1016/j.bbagen.2009.07.026
- Bjørklund, G., Crisponi, G., Nurchi, V. M., Cappai, R., Buha Djordjevic, A., & Aaseth, J. (2019). A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead. Molecules (Basel, Switzerland), 24(18), 3247. https://doi.org/10.3390/molecules24183247
- Mastinu, A., Kumar, A., Maccarinelli, G., Bonini, S. A., Premoli, M., Aria, F., Gianoncelli, A., & Memo, M. (2019). Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules (Basel, Switzerland), 24(8), 1517. https://doi.org/10.3390/molecules24081517
- Beltcheva, M., Metcheva, R., Popov, N., Teodorova, S. E., Heredia-Rojas, J. A., Rodríguez-de la Fuente, A. O., Rodríguez-Flores, L. E., & Topashka-Ancheva, M. (2012). Modified natural clinoptilolite detoxifies small mammal’s organism loaded with lead I. Lead disposition and kinetic model for lead bioaccumulation. Biological trace element research, 147(1-3), 180–188. https://doi.org/10.1007/s12011-011-9278-4
- Johnson, P. L., Kochin, B. F., McAfee, M. S., Stromnes, I. M., Regoes, R. R., Ahmed, R., Blattman, J. N., & Antia, R. (2011). Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. Journal of virology, 85(11), 5565–5570. https://doi.org/10.1128/JVI.00166-11
- Sugishita, Y., Nakayama, T., Sugawara, T., & Ohkusa, Y. (2020). Negative effect on immune response of repeated influenza vaccination and waning effectiveness in interseason for elderly people. Vaccine, 38(21), 3759–3765. https://doi.org/10.1016/j.vaccine.2020.03.025
- Khurana, S., Hahn, M., Coyle, E. M., King, L. R., Lin, T. L., Treanor, J., Sant, A., & Golding, H. (2019). Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans. Nature communications, 10(1), 3338. https://doi.org/10.1038/s41467-019-11296-5
- Kwong, J. C., Chung, H., Jung, J. K., Buchan, S. A., Campigotto, A., Campitelli, M. A., Crowcroft, N. S., Gubbay, J. B., Karnauchow, T., Katz, K., McGeer, A. J., McNally, J. D., Richardson, D. C., Richardson, S. E., Rosella, L. C., Schwartz, K. L., Simor, A., Smieja, M., Zahariadis, G., & Canadian Immunization Research Network (CIRN) investigators (2020). The impact of repeated vaccination using 10-year vaccination history on protection against influenza in older adults: a test-negative design study across the 2010/11 to 2015/16 influenza seasons in Ontario, Canada. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(1), 1900245. https://doi.org/10.2807/1560-7917.ES.2020.25.1.1900245
- McLean, H. Q., Thompson, M. G., Sundaram, M. E., Meece, J. K., McClure, D. L., Friedrich, T. C., & Belongia, E. A. (2014). Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 59(10), 1375–1385. https://doi.org/10.1093/cid/ciu680
- Murphy, B. R., & Whitehead, S. S. (2011). Immune response to dengue virus and prospects for a vaccine. Annual review of immunology, 29, 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315
- Fulginiti, V. A., Eller, J. J., Sieber, O. F., Joyner, J. W., Minamitani, M., & Meiklejohn, G. (1969). Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. American journal of epidemiology, 89(4), 435–448. https://doi.org/10.1093/oxfordjournals.aje.a120956
- Naaber, P., Tserel, L., Kangro, K., Sepp, E., Jürjenson, V., Adamson, A., Haljasmägi, L., Rumm, A. P., Maruste, R., Kärner, J., Gerhold, J. M., Planken, A., Ustav, M., Kisand, K., & Peterson, P. (2021). Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. The Lancet regional health. Europe, 10, 100208. https://doi.org/10.1016/j.lanepe.2021.100208
- Tetro J. A. (2020). Is COVID-19 receiving ADE from other coronaviruses?. Microbes and infection, 22(2), 72–73. https://doi.org/10.1016/j.micinf.2020.02.006
- Sánchez-Zuno, G. A., Matuz-Flores, M. G., González-Estevez, G., Nicoletti, F., Turrubiates-Hernández, F. J., Mangano, K., & Muñoz-Valle, J. F. (2021). A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. International journal of immunopathology and pharmacology, 35, 20587384211050199. https://doi.org/10.1177/20587384211050199
- Pecora, F., Persico, F., Argentiero, A., Neglia, C., & Esposito, S. (2020). The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients, 12(10), 3198. https://doi.org/10.3390/nu12103198
- Tourkochristou, E., Triantos, C., & Mouzaki, A. (2021). The Influence of Nutritional Factors on Immunological Outcomes. Frontiers in immunology, 12, 665968. https://doi.org/10.3389/fimmu.2021.665968
- DiNicolantonio, J. J., & O’Keefe, J. H. (2021). Magnesium and Vitamin D Deficiency as a Potential Cause of Immune Dysfunction, Cytokine Storm and Disseminated Intravascular Coagulation in covid-19 patients. Missouri medicine, 118(1), 68–73.
- Tian, J., Tang, L., Liu, X., Li, Y., Chen, J., Huang, W., & Liu, M. (2022). Populations in Low-Magnesium Areas Were Associated with Higher Risk of Infection in COVID-19’s Early Transmission: A Nationwide Retrospective Cohort Study in the United States. Nutrients, 14(4), 909. https://doi.org/10.3390/nu14040909
- Poe, F. L., & Corn, J. (2020). N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Medical hypotheses, 143, 109862. https://doi.org/10.1016/j.mehy.2020.109862
- Pawar, A., Russo, M., Rani, I., Goswami, K., Russo, G. L., & Pal, A. (2022). A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytotherapy research : PTR, 36(6), 2394–2415. https://doi.org/10.1002/ptr.7461
- Rea, I. M., & Alexander, H. D. (2022). Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing research reviews, 73, 101494. https://doi.org/10.1016/j.arr.2021.101494
- Liao, M. T., Wu, C. C., Wu, S. V., Lee, M. C., Hu, W. C., Tsai, K. W., Yang, C. H., Lu, C. L., Chiu, S. K., & Lu, K. C. (2021). Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel, Switzerland), 10(9), 1440. https://doi.org/10.3390/antiox10091440